考研数学:必考的定理证明整理(1)

本站小编 免费考研网/2016-05-29

考研数学的定理证明是一直考生普遍感觉不太有把握的内容,而2016年考研数学真题释放出一个明确信号——考生需重视教材中重要定理的证明。下面跨考教育为考生梳理一下教材中那些要求会证的重要定理。

一、求导公式的证明

2015年真题考了一个证明题:证明两个函数乘积的导数公式。几乎每位同学都对这个公式怎么用比较熟悉,而对它怎 么来的较为陌生。实际上,从授课的角度,这种在2015年前从未考过的基本公式的证明,一般只会在基础阶段讲到。如果这个阶段的考生带着急功近利的心态只 关注结论怎么用,而不关心结论怎么来的,那很可能从未认真思考过该公式的证明过程,进而在考场上变得很被动。这里给2017考研学子提个醒:要重视基础阶 段的复习,那些真题中未考过的重要结论的证明,有可能考到,不要放过。

当然,该公式的证明并不难。先考虑f(x)*g(x)在点x0处的导 数。函数在一点的导数自然用导数定义考察,可以按照导数定义写出一个极限式子。该极限为“0分之0”型,但不能用洛必达法则,因为分子的导数不好算(乘积 的导数公式恰好是要证的,不能用!)。利用数学上常用的拼凑之法,加一项,减一项。这个“无中生有”的项要和前后都有联系,便于提公因子。之后分子的四项 两两配对,除以分母后考虑极限,不难得出结果。再由x0的任意性,便得到了f(x)*g(x)在任意点的导数公式。

类似可考虑f(x)+g(x),f(x)-g(x),f(x)/g(x)的导数公式的证明。

二、微分中值定理的证明

这一部分内容比较丰富,包括费马引理、罗尔定理、拉格朗日定理、柯西定理和泰勒中值定理。除泰勒中值定理外,其它定理要求会证。

费 马引理的条件有两个:1.f'(x0)存在2. f(x0)为f(x)的极值,结论为f'(x0)=0。考虑函数在一点的导数,用什么方法?自然想到导数定义。我们可以按照导数定义写出f'(x0)的极 限形式。往下如何推理?关键要看第二个条件怎么用。“f(x0)为f(x)的极值”翻译成数学语言即f(x) -f(x0)<0(或>0),对x0的某去心邻域成立。结合导数定义式中函数部分表达式,不难想到考虑函数部分的正负号。若能得出函数部分的 符号,如何得到极限值的符号呢?极限的保号性是个桥梁。

费马引理中的“引理”包含着引出其它定理之意。那么它引出的定理就是我们下面要讨论 的罗尔定理。若在微分中值定理这部分推举一个考频最高的,那罗尔定理当之无愧。该定理的条件和结论想必各位都比较熟悉。条件有三:“闭区间连续”、“开区 间可导”和“端值相等”,结论是在开区间存在一点(即所谓的中值),使得函数在该点的导数为0。该定理的证明不好理解,需认真体会:条件怎么用?如何和结 论建立联系?当然,我们现在讨论该定理的证明是“马后炮”式的:已经有了证明过程,我们看看怎么去理解掌握。如果在罗尔生活的时代,证出该定理,那可是十 足的创新,是要流芳百世的。

闲言少叙,言归正传。既然我们讨论费马引理的作用是要引出罗尔定理,那么罗尔定理的证明过程中就要用到费马引 理。我们对比这两个定理的结论,不难发现是一致的:都是函数在一点的导数为0。话说到这,可能有同学要说:罗尔定理的证明并不难呀,由费马引理得结论不就 行了。大方向对,但过程没这么简单。起码要说清一点:费马引理的条件是否满足,为什么满足?

前面提过费马引理的条件有两个——“可导”和 “取极值”,“可导”不难判断是成立的,那么“取极值”呢?似乎不能由条件直接得到。那么我们看看哪个条件可能和极值产生联系。注意到罗尔定理的第一个条 件是函数在闭区间上连续。我们知道闭区间上的连续函数有很好的性质,哪条性质和极值有联系呢?不难想到最值定理。那么最值和极值是什么关系?这个点需要想 清楚,因为直接影响下面推理的走向。结论是:若最值取在区间内部,则最值为极值;若最值均取在区间端点,则最值不为极值。那么接下来,分两种情况讨论即 可:若最值取在区间内部,此种情况下费马引理条件完全成立,不难得出结论;若最值均取在区间端点,注意到已知条件第三条告诉我们端点函数值相等,由此推出 函数在整个闭区间上的最大值和最小值相等,这意味着函数在整个区间的表达式恒为常数,那在开区间上任取一点都能使结论成立。

拉格朗日定理和柯西定理是用罗尔定理证出来的。掌握这两个定理的证明有一箭双雕的效果:真题中直接考过拉格朗日定理的证明,若再考这些原定理,那自然驾轻就熟;此外,这两个的定理的证明过程中体现出来的基本思路,适用于证其它结论。

以 拉格朗日定理的证明为例,既然用罗尔定理证,那我们对比一下两个定理的结论。罗尔定理的结论等号右侧为零。我们可以考虑在草稿纸上对拉格朗日定理的结论作 变形,变成罗尔定理结论的形式,移项即可。接下来,要从变形后的式子读出是对哪个函数用罗尔定理的结果。这就是构造辅助函数的过程——看等号左侧的式子是 哪个函数求导后,把x换成中值的结果。这个过程有点像犯罪现场调查:根据这个犯罪现场,反推嫌疑人是谁。当然,构造辅助函数远比破案要简单,简单的题目直 接观察;复杂一些的,可以把中值换成x,再对得到的函数求不定积分。


相关话题/定理

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 中值定理:基础阶段掌握到何种程度?
      考研数学考查的一项基本能力是逻辑推理能力,其实就是证明问题的能力。那如何考查呢?基本上有如下几个出题的方向:等式的证明、不等式的证明以及中值定理的证明。下面,跨考教育数学教研室邵伟如老师就为大家介绍该如何掌握,掌握到何种程度才能为之后的复习打下坚实基础。  提到中值定理大家第一反应是头疼,根本不 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 考研数学:微分中值定理
      考研数学中,微分中值定理是重难点。利用微分中值定理来证明与区间内某点出导数值有关的问题是考研当中的常考题型,这种类型的题大都以综合题的形式出现的。以下,跨考教育数学教研室吴方方老师就着重讲解微分中值定理。  考研当中对于这一部分的题目十之六七是用罗尔定理来证明的。关于罗尔定理,首先我们一定要掌握 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 2016年考研数学大纲解析之中值定理
      2016年考研大纲已发布,关于考研数学中中值定理的证明依然很重要。它的相关证明是考研数学中公认的重点和难点,往年这部分的常考证明题这种大题。然而最近两年没考这一部分大题。2014年的高数证明题考的函数不等式的证明,而2015出乎意料地考了一个用导数定义证明求导公式的证明题。虽然这两年没有考这部分 ...
    本站小编 中国研究生招生信息网 2016-03-01
  • 2016考研数学重难点:微分中值定理
     考研数学中,微分中值定理是重难点。利用微分中值定理来证明与区间内某点出导数值有关的问题是考研当中的常考题型,这种类型的题大都以综合题的形式出现的。以下,跨考教育数学教研室吴方方老师就着重讲解微分中值定理。  考研当中对于这一部分的题目十之六七是用罗尔定理来证明的。关于罗尔定理,首先我们一定要掌握罗 ...
    本站小编 跨考教育 2015-04-24
  • 2016考研数学:基础期中值定理备考说明
     考研数学考查的一项基本能力是逻辑推理能力,其实就是证明问题的能力。那如何考查呢?基本上有如下几个出题的方向:等式的证明、不等式的证明以及中值定理的证明。下面,跨考教育数学教研室邵伟如老师就为大家介绍该如何掌握,掌握到何种程度才能为之后的复习打下坚实基础。  提到中值定理大家第一反应是头疼,根本不知 ...
    本站小编 跨考教育 2015-04-24
  • 2015数学大纲解析六 微分中值定理
    大家好,我是跨考教育集团数学教研室的向喆老师。在2014-9-13日,2015年考研数学大纲正式发布。众所周知,考研大纲是学生复习的依据。所以,我将对考纲涉及的重要考点进行深度的分析,希望对广大考生的后期备考有帮助。  首先说下我对大纲解析的整体安排。由于每年数学考纲比较稳定:题型分布,知识点分布大致相同。所以我重点来解析下考纲要求的重要考点的复习方法,我分7次来说明。第一次说明极限计算的学习方法,第二次说明微分中值定理学习方法,第三次说明不等式证明和方程根个数问题学习方法,第四次说明一元函数积分计算学习方法,第五次说明定积分应用学习方法,第六次说明多元函数积分学学习方法,第七次说明级数学习方法。  今天我 ...
    本站小编 新浪教育 2014-12-21
  • 中值定理总结
    恩,谢谢楼主,顶一下-----------------------------------------------------------------楼主很强大啊------------------------- ...
    免费考研论坛 2011-11-29
  • 中值定理总结
    嗯,不足道我的感觉是不是准确,这个其实没什么用,还是谢谢楼主了------------------------------------------------------------- ...
    免费考研论坛 2011-11-29
  • 中值定理总结
    -----------------------------------------------------------------2011数学考研大纲--------------------------------------- ...
    免费考研论坛 2011-11-29
  • 中值定理总结
    不知道说什么,先下下来再看看,顺便回复多一点顶楼主。-----------------------------------------------------------------谢谢楼 ...
    免费考研论坛 2011-11-29