四川大学考研生物化学习题库及答案完整版(13)

本站小编 福瑞考研网/2017-01-11


6.领头链:DNA的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向(亦即新合成的DNA沿5/→3/方向)不断延长。所以领头链是连续的。
7.随后链:已知的DNA聚合酶不能催化DNA链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的。
8.有意义链:即华森链,华森——克里格型DNA中,在体内被转录的那股DNA链。简写为W strand。
9.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用。
10.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复。
11.内含子:真核生物的mRNA前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子。
12.外显子:真核生物的mRNA前体中,编码序列称为外显子。
13.基因载体:外源DNA片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA一起进行复制与表达,这种运载工具称为载体。
14.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA构成,其大小从1—200Kb。

(二)、填空题答案
1.领头链;连续的;随从链;不连续的;5′;RNA;5′ →3′。
2.NAD+;ATP。
3. ; ;
4.有意义链。
5.反向转录;逆转录酶。
6.不作用;不作用;不作用;Up+Gp+Cp+A;UpGp+CpA;GpCp+Up+A;
7.转换;颠换;插入;缺失。
8.氨基;酮基;转换。
9.5′→3′
10.连续 相同  不连续  相反
11.利福平  dNTP
12.5′→3′聚合  3′→5′外切  5′→3外切  焦磷酸解作用,焦磷酸交换作用
13.拓朴异构酶  使超螺旋DNA变为松驰状
14.复制位点  多位点
15.3′→5′核酸外切酶  校对
16.3  DNA聚合酶Ⅲ  DNA聚合酶Ⅱ
17.专一的核酸内切酶   解链酶   DNA聚合酶Ⅰ  DNA连接酶
18.SSB(单链结合蛋白)
19.RNA引物  DNA聚合酶Ⅲ  DNA聚合酶Ⅰ  DNA连接酶
20.同一RNA聚合酶  3  RNA聚合酶Ⅰ  RNA聚合酶Ⅱ  RNA聚合酶Ⅲ
21.启动子  编码  终止子
22.隔裂基因  外显子  内含子  外显子  内含子
23.组  非组    非组

(三)选择题
1.(A)DNA半保留复制需要来自亲代的每一条标记链作模板合成互补链,以保持与亲代相同的完整结构。因此,在无记溶液中进行第一轮复制将产生两个半标记分子。第二轮复制将产生两个半标记分子和两个不带标记的双链DNA分子。
2.(E)在DNA真正能够开始复制之前,必须由解链酶使DNA双链结构局部解链。在每股单链DNA模板上,由RNA聚合酶(引物酶)催化合成一小段(大约10—50个核苷酸)互补RNA引物。然后由DNA聚合酶Ⅲ向引物3′端加入脱氧核苷—5′—三磷酸,从5′→3′方向合成DNA片段(冈崎片段),直至另一RNA引物的5′末端。接着在DNA聚合酶Ⅰ的作用下将RNA引物从5′端逐步降解除去与之相邻的DNA片段由3′端延长,以填补RNA除去后留下的空隙。最后由DNA连接酶将DNA片段连接成完整连续的DNA链。
3.(D)DNA复制三代后,每八个完整DNA双链中将有两个双链分子含有一股亲代链。
4.(E)DNA是由DNA聚合酶Ⅲ复合体复制的。该酶催化脱氧三磷酸核苷以核苷酸的形式加到RNA引物链上,选择只能与亲链DNA碱基互补配对的核苷酸参入。参入的第一个脱氧核苷酸以共价的磷酸二酯键与引物核苷酸相连。链的生长总是从5′向3′延伸的。DNA复制开始于特异起始点,定点双向进行。
5.(A)DNA复制必需胸腺嘧啶(T)与腺嘌呤(A)配对,鸟嘌呤(G)与胞嘧啶(C)配对,从而使双螺旋两链之间部分地靠氨基与酮基间形成的氢键维系起来。链本身是反向平行方向合成的,即题中所述之磷酸二酯键的5′→3′顺序决定其沿3′→5′方向互补。
6.(B)DNA聚合酶Ⅰ在起聚合酶作用时必需要有模板和引物。这个一条肽链的蛋白质除聚合酶活性外还具有3′和5′外切核酸酶活性。在正常DNA复制时,它的作用是水解RNA引物链(5′→3′外切核酸酶活性)并用模板指导的脱氧核苷酸取代它们(聚合功能)。DNA聚合酶Ⅰ也参与DNA修复。例如在切除胸腺嘧啶二聚体中起5′→3′外切核酸酶的作用。在正常DNA复制时,DNA聚合酶Ⅰ表现3′外切核酸酶活性,切除错误参入的脱氧核苷酸残基。冈崎片段是由DNA聚合酶Ⅲ复合体产生的,而不是DNA聚合酶Ⅰ。在除去RNA引物链后,DNA片段通过DNA连接酶连接。DNA聚合酶Ⅱ,其功能目前还不清楚,一些细菌突变体,虽无DNA聚合酶Ⅱ,但却能正常生长。DNA聚合酶Ⅰ则是正常生长所必需的。
7.(B)真核生物中有三种DNA聚合酶,αβ及γ。DNApolα在细胞核DNA复制中起作用;DNApolβ在细胞核DNA修复中起作用;而DNApolγ则在线粒体DNA复制中起作用。它们都需要引物,都用脱氧三磷酸核苷作底物,都按5′→3′方向合成新生DNA链。真核生物DNA聚合酶任何一种均不表现核酸酶活性。
8.(B)DNA复制时,如果两股链按5′→3′方向先合成短的DNA片段,然后再连接成连续的链,这就能使DNA的两条反向互补链能够同时按5′→3′方向的聚合机制进行复制。冈崎首先从大肠杆菌中分离出正在复制的新生DNA,并发现这新生DNA是由一些不连续片段(冈崎片段)所组成。在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,在将细胞DNA变性处理(也就是解链)之后,冈崎分离得到了标记的DNA片段。它们是单链的,并且由于DNA聚合酶Ⅲ复合体用RNA作引物,因此新生冈崎片段以共价键连着小段RNA链,但它们既不是碱基互补的RNA—DNA双链杂合体,也不是来自亲链的片段。新生冈崎片段决不会被核酸酶切除。
9.(D)DNA链内胸腺嘧啶二聚体可因紫外线(UV)照射而形成。专一的修复系统依赖UV—特异的内切核酸酶,它能识别胸腺嘧啶二聚体,并且通常在二聚体5′侧切断磷酸二酯键从而在DNA链内造成一个缺口。损伤序列的切除以及用完整的互补链作为模板重新合成切去的片段都是由DNA聚合酶Ⅰ来完成的。主链与新合成片段之间的裂口则由DNA连接酶接合。碱基缺失、插入、甲基化,或烷基化均不能作为切除修复体系靶子而为UV—特异性内切核酸酶所识别。
10.(C)DNA连接酶能够连接留有缺口的DNA链或闭合单股DNA链以形成环状 DNA分子。该酶需要一股链末端的游离3/-OH和另一股链末端的5/-磷酸,并且要求这两股链是双链DNA的一部分。反应是吸能的,因此需要能源。在大肠杆菌和其它细菌中,能源是NAD+分子中的焦磷酸键。NAD+先与酶形成酶—AMP复合物,同时释放叮NAD的尼克酰胺单核苷酸;酶一AMP复合物上的AMP再转移到DNA链的5/-磷酸基上,使其活化,然后形成磷酸二酯键并释放AMP。
11.(E)RNA聚合酶和DNA聚合酶都是以三磷酸核苷(NTP或dNTP)为其底物,这两种聚合酶都是在生长中的多核苷酸链的3′端加接核苷酸单位。DNA聚合酶合成与DNA互补的DNA。合成与RNA互补的DNA的酶称作逆转录酶。
12.(B)紫外线(260nm)照射可引起DNA分子中同一条链相邻胸腺嘧啶之间形成二聚体,并从该点终止复制。该二聚体可由包括连接酶在内的酶系切除和修复,或在光复合过程中,用较长(330—450nm)或较短(230nm)波长的光照射将其分解。
13.(E)DNA链中插入一个额外核苷酸会引起移码突变并使突变点以后转录的全部mRNA发生翻译错误。题中列出的所有其它突变通常仅引起一个氨基酸的错误(如题中的A或B),或从氨基酸序列中删除一个氨基酸(D),或在氨基酸顺序中完全没有错误。需要指出的是,如果A或B突变导致生成“无意义”或链终止密码子,则这种突变所造成的后果也会象移码突变那样是致死的。
14.(E)在Hbs中,β链上一个缬氨酸残基替换了谷氨酸,这是由于一个核苷酸碱基的点突变所造成的后果。即位于三联体第二位的胸腺嘧啶转换为腺嘌呤。
15.(A)自发点突变多半是由于嘌呤或嘧啶碱中氢原子的互变异构移位而引起的。在DNA复制中,这种移位会引起碱基配对的改变。某些诱变剂如5—溴尿嘧啶和2—氨基嘌呤可促进DNA碱基的互变异构。
16.(A)吖啶衍生物可导致一个碱基对的插入或缺失,从而引起移码突变。5—溴尿嘧啶可引起转换突变,因为溴取代了胸腺嘧啶的甲基,这样则增加了烯醇式互变异构物与鸟嘌呤而不是腺嘌呤进行碱基配对的可能性。咪唑硫嘌呤可转变为6—巯基嘌呤,后者是嘌呤的类似物。乙基乙磺酸可通过使鸟嘌呤烷基化引起转换突变。
17.(D)5—溴尿嘧啶可代替胸腺嘧啶参入到DNA中,从而产生密度较高的DNA。然后可在氯化铯密度梯度中用离心法对新合成的DNA进行定量分析。DNA中的5—溴尿嘧啶较正常胸嘧啶既不更活泼又不更易被断裂,也不能象吖啶染料那样引起移码突变。
18.(B)RNA聚合酶必须以DNA为模板催化合成RNA,通常只转录双螺旋DNA其中的一条链。RNA链的合成方向是从5′到3′端,产物从来没有环状分子。与DNA聚合酶不同,RNA聚合酶不需要引物。
19.(A)σ因子是RNA聚合酶的一个亚基,σ因子本身没有催化功能,它的作用是与核心酶结合,对转录的起始特异性起决定性的作用。在有σ因子的情况下,RNA聚合酶将选择DNA准备转录的那条链,并在适当的启动基因部位开始转录。
20.(B)真核生物有三种RNA聚合酶,它们分别催化45S—rRNA(RAN聚合酶Ⅰ)mRNA和SnRNA(RNA聚合酶Ⅱ),以及tRNA和5S—rRNA(RNA聚合酶Ⅲ)的合成。这三种酶可以根据它们对抗生素α—鹅膏蕈碱的敏感度不同加以区别:RNA聚合酶Ⅰ耐受;RNA聚合酶Ⅱ极敏感;RNA聚合酶Ⅲ中等敏感。RNA聚合酶Ⅰ催化合成的45S原始转录本,经转录后加工而成为成熟的18S—rRNA,5.8S—rRNA和28S—rRNA。
21.(D)真核生物DNA在多个复制叉上按半保留方式复制。真核生物有三种DNA聚合酶:α、β及γ。分别参加细胞核DNA复制,细胞核DNA修复,以及线粒体DNA复制。真核生物DNA聚合酶一般都不具有核酸酶活性。真核DNA复制时,组蛋白不从DNA解离下来,而是留在含有领头子链的双链DNA上。新合成的组蛋白则与随从子链结合。
22.(C)原核细胞转录终止不是随机进行的,据目前所知有两种转录终止方式即依赖Rho (ρ)因子与不依赖Rho因子的方式。不依赖Rho因子的转录终止与转录产物形成二级结构有关,即在基因的末端含G—C丰富的回文结构,当RNA转录延长至该部位时,按模板转录出的RNA碱基序列会立即形成发夹型的二级结构,这种二级结构是阻止转录继续向下游推进的关键。Rho因子是RNA聚合酶之外的一种蛋白质,有控制转录终止的作用。Rho因子本身似乎就具有ATP酶的活性。
23.B:DNA连接酶催化DNA链两段之间形成磷酸二酯键,但这两段必须是在DNA双螺旋结构之中,它不能将两条游离的单链DNA分子连接起来。在大肠杆菌中,成键所需能量来自NAD,产物是AMP和烟酰胺单核苷酸;而在某些动物细胞以及噬菌体中,则以ATP作为能源。DNA连接酶在DNA合成、修复以及重组中都是十分重要的。
24.B:真核mRNA是从2至20千碱基长的细胞核RNA前体——核不均—RNA(hnRNA)形成的。所有真核mRNA5′端均具有5′—5′焦磷酸连接的7-甲基鸟苷(帽结构)。大多数真核mRNA的3′端连有150至200个核苷酸长度的聚腺苷酸尾链。从mRNA前体切除内含子是由具有高度专一性的酶性催化完成的。内含子是不被翻译的。真核生物mRNA是单顺反子的。

(四)是非题
1.对     2.对     3.错     4.错     5.错     6.错
7.对     8.错     9.对    10.对    11.对    12.对
(五)问答题
1.答:在细胞分裂过程中通过DNA的复制把遗传信息由亲代传递给子代,在子代的个体发育过程中遗传信息由DNA传递到RNA,最后翻译成特异的蛋白质;在RNA病毒中RNA具有自我复制的能力,并同时作为mRNA,指导病毒蛋白质的生物合成;在致癌RNA病毒中,RNA还以逆转录的方式将遗传信息传递给DNA分子。
2.答:(1)复制过程是半保留的。
(2)细菌或病毒DNA的复制通常是由特定的复制起始位点开始,真核细胞染色体DNA复制则可以在多个不同部位起始。
(3)复制可以是单向的或是双向的,以双向复制较为常见,两个方向复制的速度不一定相同。
(4)两条DNA链合成的方向均是从5’向3’方向进行的。
(5)复制的大部分都是半不连续的,即其中一条领头链是相对连续的,其他随后链则是不连续的。
(6)各短片段在开始复制时,先形成短片段RNA作为DNA合成的引物,这一RNA片段以后被切除,并用DNA填补余下的空隙。
3.答:DNA复制从特定位点开始,可以单向或双向进行,但是以双向复制为主。由于 DNA双链的合成延伸均为5′→3′的方向,因此复制是以半不连续的方式进行,可以概括为:双链的解开;RNA引物的合成;DNA链的延长;切除RNA引物,填补缺口,连接相邻的DNA片段。
(1)双链的解开  在DNA的复制原点,双股螺旋解开,成单链状态,形成复制叉,分别作为模板,各自合成其互补链。在复制叉上结合着各种各样与复制有关的酶和辅助因子。
(2)RNA引物的合成  引发体在复制叉上移动,识别合成的起始点,引发RNA引物的合成。移动和引发均需要由ATP提供能量。以DNA为模板按5′→3′的方向,合成一段引物RNA链。引物长度约为几个至10个核苷酸。在引物的5′端含3个磷酸残基,3′端为游离的羟基。
(3)DNA链的延长  当RNA引物合成之后,在DNA聚合酶Ⅲ的催化下,以四种脱氧核糖核苷5′-三磷酸为底物,在RNA引物的3′端以磷酸二酯键连接上脱氧核糖核苷酸并释放出PPi。DNA链的合成是以两条亲代DNA链为模板,按碱基配对原则进行复制的。亲代DNA的双股链呈反向平行,一条链是5′→3′方向,另一条链是3′→5′方向。在一个复制叉内两条链的复制方向不同,所以新合成的二条子链极性也正好相反。由于迄今为止还没有发现一种DNA聚合酶能按3′→5′方向延伸,因此子链中有一条链沿着亲代DNA单链的3′→5′方向(亦即新合成的DNA沿5′→3′方向)不断延长。
(4)切除引物,填补缺口,连接修复  当新形成的冈崎片段延长至一定长度,其3′-OH端与前面一条老片断的5′断接近时,在DNA聚合酶Ⅰ的作用下,在引物RNA与DNA片段的连接处切去RNA引物后留下的空隙,由DNA聚合酶Ⅰ催化合成一段DNA填补上;在DNA连接酶的作用下,连接相邻的DNA链;修复掺入DNA链的错配碱基。这样以两条亲代DNA链为模板,就形成了两个DNA双股螺旋分子。每个分子中一条链来自亲代DNA,另一条链则是新合成的。
4.答:(1)原核细胞大肠杆菌的RNA聚合酶研究的较深入。这个酶的全酶由5种亚基(α2ββ′δω)组成,还含有2个Zn原子。在RNA合成起始之后,δ因子便与全酶分离。不含δ因子的酶仍有催化活性,称为核心酶。δ亚基具有与启动子结合的功能,β亚基催化效率很低,而且可以利用别的DNA的任何部位作模板合成RNA。加入δ因子后,则具有了选择起始部位的作用,δ因子可能与核心酶结合,改变其构象,从而使它能特异地识别DNA模板链上的起始信号。
(2)真核细胞的细胞核内有RNA聚合酶I、II和III,通常由4~6种亚基组成,并含有Zn2+。RNA聚合酶I存在于核仁中,主要催化rRNA前体的转录。RNA聚合酶Ⅱ和Ⅲ存在于核质中,分别催化mRNA前体和小分子量RNA的转录。此外线粒体和叶绿体也含有RNA聚合酶,其特性类似原核细胞的RNA聚合酶。
5.答:RNA转录过程为起始位点的识别、起始、延伸、终止。
(1)起始位点的识别  RNA聚合酶先与DNA模板上的特殊启动子部位结合,σ因子起着识别DNA分子上的起始信号的作用。在σ亚基作用下帮助全酶迅速找到启动子,并与之结合生成较松弛的封闭型启动子复合物。这时酶与DNA外部结合,识别部位大约在启动子的-35位点处。接着是DNA构象改变活化,得到开放型的启动子复合物,此时酶与启动子紧密结合,在-10位点处解开DNA双链,识别其中的模板链。由于该部位富含A-T碱基对,故有利于DNA解链。开放型复合物一旦形成,DNA就继续解链,酶移动到起始位点。
(2)起始留在起始位点的全酶结合第一个核苷三磷酸。第一个核苷三磷酸常是GTP或ATP。形成的启动子、全酶和核苷三磷酸复合物称为三元起始复合物,第一个核苷酸掺入的位置称为转录起始点。这时σ亚基被释放脱离核心酶。
(3)延伸  从起始到延伸的转变过程,包括σ因子由缔合向解离的转变。DNA分子和酶分子发生构象的变化,核心酶与DNA的结合松弛,核心酶可沿模板移动,并按模板序列选择下一个核苷酸,将核苷三磷酸加到生长的RNA链的3′-OH端,催化形成磷酸二酯键。转录延伸方向是沿DNA模板链的3′→5′方向按碱基酸对原则生成5′→3′的RNA产物。RNA链延伸时,RNA聚合酶继续解开一段DNA双链,长度约17个碱基对,使模板链暴露出来。新合成的RNA链与模板形成RNA-DNA的杂交区,当新生的RNA链离开模板DNA后,两条DNA链则重新形成双股螺旋结构。
(4) 终止  在DNA分子上有终止转录的特殊碱基顺序称为终止子,它具有使RNA聚合酶停止合成RNA和释放RNA链的作用。这些终止信号有的能被RNA聚合酶自身识别,而有的则需要有ρ因子的帮助。ρ因子是一个四聚体蛋白质,它能与RNA聚合酶结合但不是酶的组分。它的作用是阻RNA聚合酶向前移动,于是转录终止,并释放出已转录完成的RNA链。对于不依赖于ρ因子的终止子序列的分析,发现有两个明显的特征:即在DNA上有一个15~20个核苷酸的二重对称区,位于RNA链结束之前,形成富含G-C的发夹结构。接着有一串大约6个A的碱基序列它们转录的RNA链的末端为一连串的U。寡聚U可能提供信号使RNA聚合酶脱离模板。在真核细胞内,RNA的合成要比原核细胞中的复杂得多。
6. 答:(1)目的基因调取  体外操作DNA的主要步骤之一是提取载体DNA和所需要的外源目的基因。在细胞中DNA并非以游离态分子存在,而是和RNA及蛋白质结合在一起形成复合体。DNA纯化的基本步骤是:(1)从破坏的细胞壁和膜里释放出可溶性的DNA;(2)通过变性或蛋白质分解,使DNA和蛋白质的复合体解离;(3)将DNA从其它大分子中分离出来;(4)DNA浓度和纯度的光学测定。
(2)载体选择  外源DNA片段(目的基因)要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA一起进行复制与表达,这种运载工具称为载体。载体必须具备下列条件:①在受体细胞中,载体可以独立地进行复制。所以载体本身必须是一个复制单位,称复制子,具有复制起点。而且插入外源DNA后不会影响载体本身复制的能力。②易于鉴定、筛选。也就是说,容易将带有外源DNA的重组体与不带外源DNA的载体区别开来。③易于引入受体细胞。
(3)连接  外源DNA与载体DNA之间可以通过多种方式相连接,主要有以下几种:①粘性末端连接;②平头末端连接;③接头连接等。
(4)转化  任何外源DNA重组到载体上,然后转入受体细胞中复制繁殖,这一过程称为DNA的克隆。外源DNA进入受体细胞并使它获得新遗传特性的过程称为转化。转化作用是将外源DNA引入细胞的过程。
(5)筛选  由于细胞转化的频率较低,所以从大量的宿主细胞中筛选出带有重组体的细胞并不是很容易的,当前,在实验室中,常用的筛选手段有以下几种:① 插入失活;② 菌落原位杂交;③ 免疫学方法.此外,对重组体转化的鉴定还可以采用表现型的鉴定;对重组质粒纯化并重新转化;限制性酶切图谱的绘制;重组质粒上的基因定位等更深入的方法。
第十一章  代谢调节

一、知识要点

代谢调节是生物在长期进化过程中,为适应外界条件而形成的一种复杂的生理机能。通过调节作用细胞内的各种物质及能量代谢得到协调和统一,使生物体能更好地利用环境条件来完成复杂的生命活动。根据生物的进化程度不同,代谢调节作用可在不同水平上进行:低等的单细胞生物是通过细胞内酶的调节而起作用的;多细胞生物则有更复杂的激素调节和神经调节。因为生物体内的各种代谢反应都是通过酶的催化作用完成的,所以,细胞内酶的调节是最基本的调节方式。酶的调节是从酶的区域化、酶的数量和酶的活性三个方面对代谢进行调节的。
细胞是一个高效而复杂的代谢机器,每时每刻都在进行着物质代谢和能量的转化。细胞内的四大类物质糖类、脂类、蛋白质和核酸,在功能上虽各不相同,但在代谢途径上却有明显的交叉和联系,它们共同构成了生命存在的物质基础。代谢的复杂性要求细胞有数量庞大、功能各异和分工明确的酶系统,它们往往分布在细胞的不同区域。例如参与糖酵解、磷酸戊糖途径和脂肪酸合成的酶主要存在胞浆中;参与三羧酸循环、脂肪酸β-氧化和氧化磷酸化的酶主要存在于线粒体中;与核酸生物合成有关的酶大多在细胞核中;与蛋白质生物合成有关的酶主要在颗粒型内质网膜上。细胞内酶的区域化为酶水平的调节创造了有利条件。
生物体内酶数量的变化可以通过酶合成速度和酶降解速度进行调节。酶合成主要来自转录和翻译过程,因此,可以分别在转录水平、转录后加工与运输和翻译水平上进行调节。在转录水平上,调节基因感受外界刺激所产生的诱导物和辅阻遏物可以调节基因的开闭,这是一种负调控作用。而分解代谢阻遏作用通过调节基因产生的降解物基因活化蛋白(CAP)促进转录进行,是一种正调控作用,它们都可以用操纵子模型进行解释。操纵子是在转录水平上控制基因表达的协调单位,由启动子(P)、操纵基因(O)和在功能上相关的几个结构基因组成;转录后的调节包括,真核生物mRNA转录后的加工,转录产物的运输和在细胞中的定位等;翻译水平上的调节包括,mRNA本身核苷酸组成和排列(如SD序列),反义RNA的调节,mRNA的稳定性等方面。
酶活性的调节是直接针对酶分子本身的催化活性所进行的调节,在代谢调节中是最灵敏、最迅速的调节方式。主要包括酶原激活、酶的共价修饰、反馈调节、能荷调节及辅因子调节等。


二、习  题

(一)名词解释
1.诱导酶(Inducible enzyme)
2.标兵酶(Pacemaker enzyme)
3.操纵子(Operon)
4.衰减子(Attenuator)
5.阻遏物(Repressor)
6.辅阻遏物(Corepressor)
7.降解物基因活化蛋白(Catabolic gene activator protein)
8.腺苷酸环化酶(Adenylate cyclase)
9.共价修饰(Covalent modification)
10.级联系统(Cascade system)
11.反馈抑制(Feedback inhibition)
12.交叉调节(Cross regulation)
13.前馈激活(Feedforward activation)
14.钙调蛋白(Calmodulin)

(二)英文缩写符号
1. CAP(Catabolic gene activator protein):
2. PKA(Protein kinase):
3. CaM(Calmkdulin):
4. ORF(Open reading frame):

(三)填空题
1. 哺乳动物的代谢调节可以在       、       、       和       四个水平上进行。

相关话题/生物化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 王镜岩_生物化学_第三版_考研笔记 83页
    本站小编 福瑞考研网 2017-01-09
  • 生物化学试题库_生物化学习题精编 112页
    本站小编 福瑞考研网 2017-01-09
  • 厦门大学研究生入学考试2003-2008---生物化学疑难题目
    厦大生化 难题解读 厦大研究生入学考试03-08---生物化学疑难题目 一、填空题 1. 琥珀酰CoA是_TCA的中间产物,可参与氨基酸氧化和_____。【08】 2. 对Michaelis型的酶来说,酶促反应速度达v=90%Vmax,和v=10%Vmax,则[S]0.9[S]0.1 的比值应为0.1【08】 3. 一个蛋白质分子含有四个半胱氨酸残基。若所有半胱氨酸 ...
    本站小编 福瑞考研网 2017-01-09
  • 北京体育大学历年运动生理学解剖学生物化学考博真题
    其中11年试题为本人回忆记录,不是很准确,大概看看吧。 运动生理学(100分) 05年 一、 简答题(第1题必答,10分;在第2、3、4中,每题15分,任选2题 回答,共40分) 1. 简述心电产生的原理及其在运动实践中的应用。 2. 简述最大摄氧量测试原理及其在运动实践中的应用。 3. 简述影响运动技能形成的主 ...
    本站小编 福瑞考研网 2017-01-08
  • 生物化学第三版王镜岩笔记最新整理全集 142页2017版
    目 录 第 一 章 概 述------------------------------04 第 二 章 糖 类------------------------------10 第 三 章 脂 类------------------------------20 第 四 章 蛋 白 质(注1)-------------------------28 第 五 章 酶 类(注2)-------------------------48 第 六 章 核 酸 ...
    本站小编 福瑞考研网 2017-01-02
  • 四川农业大学2001至2015生物化学854考研真题 简答题及论述题
    四川农业大学 2001至2015考研 真题 简答题及论述题 2015 1.简述蛋白质三级结构形成的特点 2.列举细胞内乙酰CoA的代谢去向 3.请写出米氏方程,并说明米氏常数的物理化学意义。已知某酶的Km为0.05mol/L,要使此酶所催化的反应速度大道最大反应速度的80%的底物浓度为多少? 4.剧烈运动后肌肉酸痛的生化基础是什么? 5.大 ...
    本站小编 福瑞考研网 2017-01-02
  • 南京农业大学814生物化学2017考研真题(回忆)
    南农生化真题(回忆版)一、名词(5*6)1、肽平面和肽单位2、细胞色素3、辅酶辅基4、氨基酸脱 羧 基(举例)5、核小体6、顺式作用元件和反式作用因子二、酶所催化的反应,及所属生化途径。(5*4)1、LDH2、丙酰辅酶A合成酶3、氨甲酰磷酸合成酶Ⅰ4、PPAR合成酶三、简答(6*4)1、生物大分子,并举例2、氨基酸的来源和去路3、 ...
    本站小编 福瑞考研网 2017-01-01
  • 2017西医综合考研:生物化学(5)
    2017考研复习拉开序幕,考生们可结合西综生物化学复习笔记进行全面的专业课复习,为以后的复习打下坚实的基础。四、RNA的空间结构与功能DNA是遗传信息的载体,而遗传作用是由蛋白质功能来体现的,在两者之间RNA起着中介作用。其种类繁多,分子较小,一般以单链存在,可有局部二级结构,各类RNA在遗传信息表 ...
    本站小编 免费考研网 2017-01-01
  • 西安交通大学硕士研究生专业介绍:生物化学与分子生物学
    西安交通大学研究生生物化学与分子生物学专业介绍如下:一.培养目标为适应我国社会主义建设的需要,本专业培养德、智、体全面发展的生物化学与分子生物学专业的高级专门人才和高等学校师资。具体要求如下:1.进一步学习、掌握马列主义、毛泽东思想和邓小平理论,逐步树立无产阶级世界观;坚持四项基本原则,热爱祖国;遵 ...
    本站小编 免费考研网 2016-12-30
  • 延安大学硕士研究生专业介绍:生物化学与分子生物学
    延安大学研究生生物化学与分子生物学专业介绍如下:生物化学与分子生物学生物化学与分子生物学学科现有教学和科研人员15人,教授2人,副教授6人;其中具有博士学位者6人。本学科主要针对陕北特色资源动植物和微生物为对象,开展生物活性物质的分离纯化与开发利用、功能基因和基因组学、基因表达调控、微生物降解修复技 ...
    本站小编 免费考研网 2016-12-30
  • 内蒙古大学硕士研究生专业介绍:生物化学与分子生物学
    内蒙古大学研究生生物化学与分子生物学专业介绍如下:一、培养目标德、智、体全面发展,热爱祖国,遵纪守法,品行端正,学风严谨,诚实守信,具有奉献精神、创新精神和团队精神。具有扎实的生物化学、分子生物学、遗传学、细胞生物学、微生物学等学科的基础理论知识和有关实验技能,掌握本学科的历史、现状、前沿概况和发展 ...
    本站小编 免费考研网 2016-12-30
  • 塔里木大学硕士研究生专业介绍:生物化学与分子生物学
    塔里木大学研究生生物化学与分子生物学专业介绍如下:生物化学与分子生物学专业简介生物化学与分子生物学学科1995年列为塔里木农垦大学123工程重点建设项目,1998年建立分子生物学校级重点实验室。2003年批准为新疆生产建设兵团重点学科,2006年获硕士学位授予点。有特殊微生物及其基因资源、天然产物化 ...
    本站小编 免费考研网 2016-12-30
  • 东北大学硕士研究生招生专业介绍:生物化学
    东北大学研究生生物化学专业介绍如下:生物化学硕士点生物化工技术是应用生物学与化学工程技术相结合,实现生物技术产业化的重要手段。随着现代生物技术的迅速发展,为生物化工学科的发展提供了更为广阔的空间。东北大学生物化工学科,现有微生物资源与微生物工程、生物资源与资源利用及古生物分子生物学3个研究方向。微生 ...
    本站小编 免费考研网 2016-12-30
  • 大连理工大学硕士研究生专业介绍:生物化学与分子生物学
    大连理工大学研究生生物化学与分子生物学专业介绍如下:生物化学与分子生物学生物化学与分子生物学硕士点是在生物化工学科博士点的软硬件设施基础上设立的。学科依托于生物化工---辽宁省重点学科,辽宁省生物工程重点实验室,结合自身的学术优势,确定的学科发展目标是以基础理论研究为核心,应用开发为重点。学科点有教 ...
    本站小编 免费考研网 2016-12-30
  • 塔里木大学硕士专业介绍:生物化学与分子生物学
    物化学与分子生物学专业简介生物化学与分子生物学学科1995年列为塔里木农垦大学123工程重点建设项目,1998年建立分子生物学校级重点实验室。2003年批准为新疆生产建设兵团重点学科,2006年获硕士学位授予点。有特殊微生物及其基因资源、天然产物化学与生物学功能、动植物基因工程三个研究方向。该学科现 ...
    本站小编 免费考研网 2016-12-30