生态学笔记——第三章 群落生态学

免费考研网  免费考研网 /2005-09-07


    群落生态学(community ecology)是研究生物群落与环境相互关系及其规律的学科,是生态学的一个重要分之科学。
第一节 群落的概念和基本特征
一.群落的概念
(一)群落的定义
     群落(生物群落,biotic community)棗指一定时间内居住在一定空间范围内的生物种群的集合。它包括植物、动物和微生物等各个物种的种群,共同组成生态系统中有生命的部分。
    生物群落=植物群落 + 动物群落+ 微生物群落
    生物群落上述的三个部分,从目前来看,植物群落学研究得最多,也最深入,群落学的一些基本原理多半是在植物群落学研究中获得的。植物群落学(phytocoenology)也叫地植物学(geobotany)、植物社会学(phytosociology)或植被生态学(ecology of vegetation),它主要研究植物群落的结构、功能、形成、发展以及与所处环境的相互关系。目前已形成比较完整的理论体系。
    动物群落学的研究较植物群落困难,起步也相对较晚,但对近代群落生态学作出重要贡献的一些原理,如中度干扰说对形成群落结构的意义,竞争压力对物种多样性的影响,形成群落结构和功能基础的物种之间的相互关系等许多重要生态学原理,多数是由动物学家研究开始,并与动物群落学的进展分不开。最有效的群落生态学研究,应该是动物、植物和微生物群落的有机结合。
     (二)群落的性质
    关于群落的性质,长期以来一直存在着两种对立的观点。争论的焦点在于群落到底是一个有组织的系统,还是一个纯自然的个体集合。
①“有机体”学派认为:沿着环境梯度或连续环境的群落组成了一种不连续的变化,因此生物群落是间断分开的。法国的Braun-Blanquet、美国的Clements和英国的Tansley等支持上述观点。
②“个体”学派则认为:在连续环境下的群落组成是逐渐变化的,因而不同群落类型只能是任意认定的。前苏联的Ramensky、美国Gleason的和法国的Lenoble等支持上述观点。
    虽然现代生态学的研究,群落存既在着连续性的一面,也有间断性的一面。如果采取生境梯度的分析的方法,即排序的方法来研究连续群变化,虽然在不少情况下,表明群落并不是分离的、有明显边界的实体,而是在空间和时间上连续的一个系列。但事实上,如果排序的结果构成若干点集的话,则可达到群落分类的目的;如果分类允许重叠的话,则又可反映群落的连续性。这一事实反映了群落的连续性和间断性之间并不一定要相互排斥,关键在于研究者从什么角度和尺度看待这个问题。
    (三)群落与生态系统
    群落和生态系统究竟是生态学中两个不同层次的研究对象,还是同一层次的研究对象。这个问题,目前还存在着不同的看法,大多数学者认为应该把两者分开来讨论,如Odum(1983)和Smith(1980)等人,但也有不少学者把它们作为同一个问题来讨论,如Kreb(1985)和Whittaker(1970)等。
    但我们认为,群落和生态系统这两个概念是有明显区别的,各具独立含义。群落是指多种生物种群有机结合的整体,而生态系统的概念是包括群落和无机环境。生态系统强调的是功能,即物质循环和能量流动。但谈到群落生态学和生态系统生态学时,确实是很难区分。群落生态学的研究内容是生物群落和环境相互关系及其规律,这恰恰也是生态系统生态学所要研究的内容。随着生态学的发展,群落生态学与生态系统生态学必将有机的结合,成为一个比较完整的,统一的生态学分支。
    (四)群落结构的松散性和边界的模糊性
     同一群落类型之间或同一群落的不同地点,群落的物种组成、分布状况和层次的划分都有很大的差异,这种差异通常只能进行定性描述,在量的方面很难找到一个统一的规律,人们视这种情况为群落结构的松散性。
     在自然条件下,群落的边界有的明显,如水生群落与陆生群落之间的边界,可以清楚的加以区分;有的边界则不明显,而处在连续的变化中,如草甸草原和典型草原的过渡带,典型草原和荒漠草原的过渡带等。多数情况下,不同群落之间存在着过渡带,被称为群落交错区(ecotone)。
(五)群落的命名
对于群落的分类和命名,常见的有以下一些方法:
1. 根据群落中的优势种来命名:如马尾松林群落,木荷林群落。
2. 根据群落所占的自然生境来命名:如岩壁植被。
3. 根据优势种的主要生活型来命名:如亚热带常绿阔叶林群落,草甸沼泽群落。
4. 根据群落中的特征种来命名:如木荷群丛
5. 根据群落动态来进行分类和命名。
      二. 群落的基本特征
      (一)、群落的物种组成
1.群落的物种组成
    任何生物群落都是由一定的生物种类组成的,调查群落中的物种组成是研究群落特征的第一步。为了掌握群落中物种的组成,通常,我们选择群落中各物种分布较均匀的地方,圈定一定的面积大小,登记这一面积中的所有的物种,然后按照一定的顺序成倍扩大面积,登记新增加的种类。开始时,面积扩大,物种随之迅速增加,但逐渐扩大面积后,物种增加的比例减少,最后,面积再增大,种类却很少增加。将两者的比例关系,绘制一张种类-面积曲线图。曲线最初陡峭上升,而后水平延伸,开始延伸的一点所示的面积,即为群落的最小面积。所谓群落最小面积,也就是说至少要求这样大的空间,才能包括组成群落的大多数物种。群落最小面积能够表现群落结构的主要特征。植物群落的最小面积比较容易确定,用上述方法即可求得。但动物群落的最小面积较难确定,常采用间接指标(如根据大熊猫的粪便、觅食量等指标)加以统计分析,确定其最小面积。
    群落最小面积,可以反映群落结构特征。组成群落的物种越丰富,群落的最小面积越大。如西双版纳热带雨林,由于环境条件优越,群落结构复杂,物种多样性十分丰富,其最小群面积可达2500㎡,群落内主要高等植物在130左右;而东北小兴安岭红松林群落,最小面积为400㎡,主要高等植物仅40中左右。
    在搞清楚群落物种组成的基础上,还必须对各物种的科、属关系和区系地理成分加以分析。这对判定群落的特征、性质和来源有很重要的意义。
2.组成种类的性质分析
   在植物群落研究中,常根据物种在群落中的作用而进行分类。
(1)优势种和建群种
优势种(dominant species)棗对群落的结构和群落环境的形成有明显控制作用的植物成为优势种。
建群种(constructive species)棗优势层中的优势种称为建群种。
在森林群落中,乔木层中的优势种既是优势种,又是建群种;而灌木层中优势种就不是建群种,原因是灌木层在森林群落中不是优势层。
(2)亚优势种(subdominant species)
指个体数量与作用都次于优势种,但在决定群落环境方面仍起着一定作用的种类。
(3)伴生种(companion species)
伴生种为群落成见种类,它与优势种相伴存在,但不起主要作用。
(4)偶见种(rare species)
偶见种是那些在群落中出现频率很低的种类,多半是由于群落本生稀少的缘故。
 
   (二)群落的数量特征
1.物种丰富度(species richness)
物种丰富度是指群落所包含的物种数目,是研究群落首先应该了解的问题。
2.多度与密度
群落内各物种的个体数量即多度。
几种常用的多度等级
Drude Clements Braun-Blanquet
Soc. 极多 Dominant 优势 D 5 非常多
Cop3 很多Cop. Cop2 多Cop1 尚多 Abundant 丰盛 A Frequent 常见 F 4 多3 较多2 较少
Sp. 少 Occasional 偶见 O  
Sol. 稀少 Rare 稀少 r 1 少
Un. 个别 Very rare 很少 Vr + 很少
    密度是指单位面积上的生物个体数,用公式表示:
     D(密度)=N(样地内某物种的个体数)/S(样地面积)
3.频度
频度是指某物种在样本总体中的出现率。
F(频度)=ni(某物种出现的样本数)/N(样本总数)×100%
4.盖度
    是植物群落学的一个术语。植物枝叶所覆盖的土地面积叫投影盖度简称盖度。它是一个重要的植物群落学指标。盖度可以用百分比表示,也可用等级单位表示。
    植物基部着生面积称为基部盖度,草本植物的基部盖度以离地0.03米处的草丛断面积计算,树种的基部盖度以某一树种的胸高(离地1.3米)断面积与样地内全部断面积之比来计算,这种基部盖度又称显著度(dominance),有人称之为优势度。
5.优势度与重要值
    优势度是确定物种在群落中生态重要性的指标,优势度大的种就是群落中的优势种。确定植物优势度时,指标主要是种的盖度和密度。动物一般以个体数或相对多度来表示。
森林群落中Curtis等(1951)提出用重要值来表示每一个物种的相对重要性。
I(重要值)=[相对密度(%)+相对频度(%)+相对显著度(%)]/300
 
   (三)群落的综合特征
1、存在度(presence)和恒有度(constancy)
    在同一类型的群落中,某一种生物所存在的群落数即为存在度。各个群落中的物种,可按其出现的次数比率划分出存在度等级。通常20%为一级,共分五级。存在度大的种类愈多,则各群落的相似程度愈大。
    某物种在各个具有相同面积的群落出现的次数称为恒有度。恒有度可以避免由于取样面积不等而造成的参差不齐。
2、确限度
    用以表示某一个种局限于某一类型植物群落的程度。Braun-Blanquet根据植物种类对群落类型的确限程度,归并为5个确限度等级。
特征种:确限度5 确限种,只见于或几乎只见于某一群落类型的物种;
确限度4 偏宜种,最常见于某一群落,但也偶见于其他群落的物种;
确限度3 适宜种,在若干群落中能或多或少丰盛地生长,但在某一群落中占优势或多度大的种。
伴随种:确限度2 不固定在某一群落内的种。
偶见种:确限度1 少见及偶见而从别的群落迁入的种,或过去群落残遗下来的种。
确限度愈大的种就是最好的特征种,它能作为一定群落类型如群丛的标志。
3、群落相似性系数
   群落系数指各样方单位共有种的百分率,其计算方法很多,目前不下十几种。Jaccard
相似性系数是目前最为基础和常用相似性系数之一,其公式为:
   群落系数=c/(a+b-c)
式中a为样方A的物种数, b为样方 B的物种数, c为样方 A和 B中的共有种数。
4、关联系数
第二节 群落的结构与物种多样性
一.群落的结构
(一)群落的外貌和生活型
1. 群落外貌
群落外貌(physiognomy)是指生物群落的外部形态或表相而言。它是群落中生物与生物间,生物与环境相互作用的综合反映。陆地生物群落的外貌主要取决于植被的特征,水生生物群落的外貌主要取决于水的深度和水流特征。陆地生物群落的外貌是由组成群落的植物种类形态及其生活型(life form)所决定的。
2. 生活型类型
    目前广泛采用的是丹麦植物学家Raunkiaer提出的系统,他是按休眠芽或复苏芽所处的位置高低和保护方式,把高等植物划分为五个生活型,在各类群之下,根据植物体的高度,芽有无芽鳞保护,落叶或常绿,茎的特点等特征,再细分为若干较小的类型。下面就Raunkiaer的生活型分类系统加以简介:
①高位芽植物(Phanerophytes) 休眠芽位于距地面25㎝以上,又可根据高度分为四个亚类,即大高位芽植物(高度﹥30米),中高位芽植物(8-30米),小高位芽植物(2-8米)与矮高位芽植物(25厘米~2米)。
②地上芽植物(chamaephytes) 更新芽位于土壤表面之上,25㎝之下,多为半灌木或草本植物。
③地面芽植物(Hemicryptophytes) 更新芽位于近地面土层内,冬季地上部分全部枯死,多为多年生草本植物。
④隐芽植物(Cryptophytes) 更新芽位于较深土层中或水中,多为鳞茎类、块茎类和根茎类多年生草本植物或水生植物。
一年生植物(Therophytes) 以种子越冬。
⑤Raunkiaer生活型被认为是进化过程中对气候条件适应的结果,因此它们的组成可反映某地区的生物气候和环境的状况。
    从表上可知,每一类植物群落都是由几种生活型的植物所组成,但其中有一类生活型占优势,生活型与环境关系密切, 高位芽植物占优势是温暖、潮湿气候地区群落的特征,如热带雨林群落;地面芽植物占优势的群落,反映了该地区具有较长的严寒季节,如温带针叶林、落叶林群落;地上芽植物占优势,反映了该地区环境比较湿冷,如长白山寒温带暗针叶林;一年生植物占优势则是干旱气候的荒漠和草原地区群落的特征,如东北温带草原。
 
表 我国几种群落类型的生活型组成
 
群落类型 Ph. Ch. H. Cr. T.
西双版纳热带雨林 94.7 5.3 0 0 0
鼎湖山南亚热带常绿阔叶林 84.5 5.4 4.1 4.1 0
浙江中亚热带常绿阔叶林 76.7 1.0 13.1 7.8 2
秦岭北坡温带落叶阔叶林 52.0 5.0 38.0 3.7 1.3
长白山寒温带暗针叶林 25.4 4.4 39.8 26.4 3.2
东北温带草原 3.6 2.0 41.1 19.0 33.4
 
(二)群落的垂直结构
    群落的垂直结构,主要指群落的分层现象。陆地群落的分层与光的利用有关。森林群落从上往下,依次可划分为乔木层、灌木层、草本层和地被层等层次。
                  乔木层
陆地植物群落  灌木层
                  草本层
                  地被层
在层次划分时,将不同高度的乔木幼苗划入实际所逗留的层中。
    群落中,有一些植物,如藤本植物和附、寄生植物,它们并不形成独立的层次,而是分别依附于各层次直立的植物体上,称为层间植物。在作具体研究时,往往把它们归入实际依附的层次中。
    水热条件越优越,群落的垂直结构越复杂,动物的种类也就越多。如热带雨林的垂直成层结构,比亚热带常绿阔叶林、温带落叶阔叶林和寒温带针叶林要复杂的多,其群落中动物的物种多样性也远比上述三种群落要丰富的多。。
    群落中动物的分层现象也很普遍。动物之所以有分层现象,主要与食物有关,因为群落不同层次提供不同的食物,其次还与不同层次的微气候条件有关。如森林中的鸟类,往往有不同的栖息空间,如森林的中层栖息着山雀、啄木鸟等,而林冠层则栖息着柳莺、交嘴和戴菊等。大多数鸟类虽然可同时利用几个不同的层次,但每一种鸟却有一个自己最喜好的层次。
    水生群落中,生态要求不同的各种生物呈现出明显的分层现象,它们的分层主要取决于水中的透光情况、水温和溶解氧的含量等。水生群落按垂直方向,一般可分为:
漂浮动物(neuston)
浮游动物(plankton)
水生生物群落 游泳动物(nekton)
底栖动物(benthos)
附底动物(epifauna)
底内动物(infauna)
(三) 水平结构
    群落的水平格局,其形成主要与构成群落的成员的分布状况有关。大多数群落,各物种常形成相当高密度集团的斑块状(patch)镶嵌。导致这种水平方向上的复杂的镶嵌性(mosaicism)主要原因有以下几方面:

图 陆地生物群落中水平格局的主要决定因素(Smith, 1980)
(四)群落的时间格局
    光、温度和湿度等许多环境因子有明显的时间节律(如昼夜节律、季节节律),受这些因子的影响,群落的组成与结构也随时间序列发生有规律的变化。这就是群落的的时间格局。
   植物群落表现最明显的就是季相,如温带草原外貌一年四季的变化。
   动物群落时间格局主要表现为:
1. 群落中动物的季节变化。如鸟类的迁徙;变温动物的休眠和苏醒;鱼类的回游等等。
2. 群落的昼夜变化。如群落中昆虫、鸟类等种类的昼夜变化。
(五)群落交错区与边缘效应
    群落交错区(ecotone)又称生态交错区或生态过渡带,是两个或多个群落之间(或生态地带之间)的过渡区域。如森林和草原之间的森林草原过渡带,水生群落和陆地群落之间的湿地过渡带。
    群落交错区是一个交叉地带或种群竞争的紧张地带,发育完好的群落交错区,可包含相邻两个群落共有的物种以及群落交错区特有的物种,在这里,群落中物种的数目及一些种群的密度往往比相邻的群落大。群落交错区种的数目及一些种的密度有增大的趋势,这种现象称为边缘效应。但值得注意的是,群落交错区物种的密度的增加并非是个普遍的规律,事实上,许多物种的出现恰恰相反,例如在森林边缘交错区,树木的密度明显地比群落里要小。
(六) 影响群落结构的因素
1.生物因素:
    竞争:如果竞争的结果引起种间的生态位的分化,将使群落中物种多样性增加。
    捕食:如果捕食者喜食的是群落中的优势种,则捕食可以提高多样性,如捕食者喜食的是竞争上占劣势的种类,则捕食会降低多样性。
2.干扰:在陆地生物群落中,干扰往往会使群落形成断层(gap),断层对于群落物种多样性的维持和持续发展,起了一个很重要的作用。不同程度的干扰,对群落的物种多样性的影响是不同的,Conell等提出的中等干扰说(intermediate disturbance hypothesis)认为,群落在中等程度的干扰水平能维持高多样性。其理由是:①在一次干扰后少数先锋种入侵断层,如果干扰频繁,则先锋种不能发展到演替中期,使多样性较低;②如果干扰间隔时间长,使演替能够发展到顶级期,则多样性也不很高;③只有在中等程度的干扰,才能使群落多样性维持最高水平,它允许更多物种入侵和定居。
3.空间异质性:
    环境的空间异质性:环境的空间异质性愈高,群落多样性也愈高。
    植物群落的空间异质性:植物群落的层次和结构越复杂,群落多样性也就越高。如森林群落的层次越多,越复杂,群落中鸟类的多样性就会越多。


二.群落的物种多样性
(一)物种多样性定义
    物种多样性是群落生物组成结构的重要指标,它不仅可以反映群落组织化水平,而且可以通过结构与功能的关系间接反映群落功能的特征。
    生物群落多样性研究始于本世纪初叶,当时的工作主要集中于群落中物种面积关系的探讨和物种多度关系的研究。1943年,Williams在研究鳞翅目昆虫物种多样性时,首次提出了“多样性指数”的概念,之后大量有关群落物种多样性的概念、原理、及测度方法的论文和专著被发表,形成了大量的物种多样性指数,一度给群落多样性的测度造成了一定混乱。自70年代以后,Whittaker(1972)、Pielou(1975)、Washington(1984)和Magurran(1988)等对生物群落多样性测度方法进行了比较全面的综述,对这一领域的发展起到了积极的推动作用。从目前来看,生物群落的物种多样性指数可分为α多样性指数、β多样性指数和γ多样性指数三类。下面我们就群落的α和β多样性指数的测定方法予以介绍。
(二)多样性的测度方法
1.α多样性指数
它包含两方面的含义:①群落所含物种的多寡,即物种丰富度;②群落中各个种的相对密度,即物种均匀度。
(1)物种丰富度指数
a. Gleason(1922)指数
      D=S/lnA
式中A为单位面积,S为群落中的物种数目。
b. Margalef(1951,1957,1958)指数
      D=(S-1)/lnN
      式中S为群落中的总数目,N为观察到的个体总数。
(2)Simpson指数
      D=1-ΣPi2
      式中Pi种的个体数占群落中总个体数的比例。
(3)种间相遇机率(PIE)指数
      D=N(N-1)/ΣNi(Ni-1)
      式中Ni为种i的个体数,N为所在群落的所有物种的个体数之和。
(4)Shannon-wiener指数
      H’=-ΣPilnPi 式中Pi=Ni/N 。
(5)Pielou均匀度指数
      E=H/Hmax
      式中H为实际观察的物种多样性指数,Hmax为最大的物种多样性指数,Hmax=LnS(S为群落中的总物种数)
(6)举例说明
例如,设有A,B,C,三个群落,各有两个物种组成,其中各种个体数组成如下:
  物种甲 物种乙
群落A 100(1.0) 0(0)
群落B 50(0.5) 50(0.5)
群落C 99(0.99) 1(0.01)
 
请计算它的物种多样性指数。
Simpson指数:
Dc=1-ΣPi2=1-Σ(Ni/N)2=1-[(99/100)2+(1/100)2]=0.0198
DB=1-[(50/100)2+(50/100)2]=0.5000
Shannon-wiener指数:
HC=-ΣNi/N ln Ni/N i=-(0.99×ln0.99+0.01×ln0.01)=0.056
HB=-(0.50×ln0.50+0.50×ln0.50)=0.69
Pielou均匀度指数:
Hmax=lnS=ln2=0.69
EA= H/Hmax=-[(1.0×ln1.0)+0]/0.69=0
EB=-(0.50×ln0.50+0.50×ln0.50)/0.69=0.69/0.69=1
EC=0.056/0.69=0.081
从上面的计算可以看出,群落的物种多样性指数与以下两个因素有关:
①种类数目,即丰富度; ②种类中个体分配上的均匀性
 
2.β多样性指数
    β多样性可以定义为沿着环境梯度的变化物种替代的程度。不同群落或某环境梯度上不同点之间的共有种越少,β多样性越大。精确地测定β多样性具有重要的意义。这是因为:①它可以指示生境被物种隔离的程度;②β多样性的测定值可以用来比较不同地段的生境多样性;③β多样性与α多样性一起构成了总体多样性或一定地段的生物异质性。
(1)Whittaker指数(βw)
βw=S/mα-1
式中:S为所研究系统中记录的物种总数;mα为各样方或样本的平均物种数。
(2)Cody指数(βc)
βc=[g(H)+l(H)]/2
式中:g(H)是沿生境梯度H增加的物种数目; l(H)是沿生境梯度H失去的物种数目,即在上一个梯度中存在而在下一个梯度中没有的物种数目。
(3)Wilson Shmida指数(βT)
βT=[g(H)+l(H)]/2α
该式是将Cody指数与Whittaker指数结合形成的。式中变量含义与上述两式相同。
3.γ多样性指数
 
 Re:[转贴]群落生态学和生态系统生态学笔记

(三)群落物种多样性的梯度变化及影响因素
1.群落物种多样性的梯度变化
群落物种多样性的变化特征是指群落组织水平上物种多样性的大小随某一生态因子梯度有规律的变化。
①纬度梯度:从热带到两极随着纬度的增加,生物群落的物种多样性有逐渐减少的趋势。如北半球从南到北,随着纬度的增加,植物群落依次出现为热带雨林、亚热带常绿阔叶林、温带落叶阔叶林、寒温带针叶林、寒带苔原,伴随着植物群落有规律的变化,物种丰富度和多样性逐渐降低。
②海拔梯度:随着海拔的升高,在温度、水分、风力、光照和土壤等因子的综合作用下,生物群落表现出明显的垂直地带性分布规律,在大多数情况下物种多样性与海拔高度呈伏相关,即随着海拔高度的升高,群落物种多样性逐渐降低。如喜马拉雅山维管植物物种多样性的变化,就表现了这样的规律。
③环境梯度:群落物种多样性与环境梯度之间的关系,有的时候表现明显,而有的时候则表现不明显。如Gartlan(1986)研究发现土壤中P、Mg、K的水平与热带植物群落物种多样性之间存在着显著的关系。Gentry(1982)对植物群落物种多样性进行的研究表明,在新热带森林类型,物种多样性与年降雨量呈显著正相关,而在热带亚洲森林类型,两者则不存在相关关系。
④时间梯度:大多数研究表明,在群落演替的早期,随着演替的进展,物种多样性增加。在群落演替的后期当群落中出现非常强的优势种时,多样性会降低。
2.影响因子
          
 
图 影响群落物种多样性的因子及相互作用
 
(四)群落多样性与稳定性
①多数生态学家认为,群落的多样性是群落稳定性的一个重要尺度,多样性高的群落,物种之间往往形成了比较复杂的相互关系,食物链和食物网更加趋于复杂,当面对来自外界环境的变化或群落内部种群的波动时,群落由于有一个较强大的反馈系统,从而可以得到较大的缓冲。从群落能量学的角度来看,多样性高的群落,能流途径更多一些,当某一条途径受到干扰被堵塞不通时,就会有其它的路线予以补充。
②May(1973,1976)等生态学家认为,生物群落的波动是呈非线形的,复杂的自然生物群落常常是脆弱的,如热带雨林这一复杂的生物群落比温带森林更易遭受人类的干扰而不稳定。共栖的多物种群落,某物种的波动往往会牵连到整个群落。他们提出了多样性的产生是由于自然的扰动和演化两者联系的结果,环境的多变的不可测性使物种产生了繁殖与生活型的多样化。
在群落多样性与稳定性的关系上,目前仍未定论。
(五)物种多样性在生物群落中的功能和作用
1.有关物种在生物群落中作用的假说
    物种以什么样的机制维持生物群落的稳定?这是一个非常重要的但是目前还仍然没有解决的生态学问题,而且是生物多样性与生物群落功能关系中的核心问题。目前有关物种在生态系统中作用的假说有下列4种。
(1)冗余种假说(Redundancy species hypothesis) :
    生物群落保持正常功能需要有一个物种多样性的域值,低于这个域值群落的功能会受影响,高于这个域值则会有相当一部分物种的作用是冗余的(Walker 1992)。
(2)铆钉假说(Rivet hypothesis):
    铆钉假说的观点与冗余假说相反,认为生物群落中所有的物种对其功能的正常发挥都有贡献而且是不能互相替代的(Ehrlich,1981) ,正像由铆钉固定的复杂机器一样,任何一个铆钉的丢失都会使该机器的作用受到影响。
(3)特异反应假说(Idiosyncratic response hypothesis):
    特异反应假说认为生物群落的功能随着物种多样性的变化而变化,但变化的强度和方向是不可预测的,因为这些物种的作用是复杂而多变的。
(4)零假说(Null hypothesis)
    零假说认为生物群落功能与物种多样性无关,即物种的增减不影响生物群落功能的正常发挥。

2、关键种的概念与类型
    上述4个假说中都没有对每个物种的作用程度做出明确的说明。在生物群落中不同物种的作用是有差别的。其中有一些物种的作用是至关重要的,它们的存在与否会影响到整个生物群落的结构和功能,这样的物种即称为关键种(Keystone species)或关键种组(Keystone group)。
    关键种的作用可能是直接的,也可能是间接的;可能是常见的,也可能是稀有的;可能是特异性(特化)的,也可能是普适性的。依功能或作用不同,可将关键种分为7类。关键种的鉴定目前比较成功的研究多在水域生态系统,而陆地生态系统的成功实例相对较少(Menge等,1994 )
表 关键种的分类(Bond,1993)
类 型 作用方式 实 例
捕食者  抑制竞争者 海洋:海獭、海胆陆地:依大小选择性采食种子的动物
食草动物 抑制竞争者 大象、兔子
病原体和寄生物 抑制捕食者、食草动物竞争者 粘液瘤菌、采采蝇
竞争者 抑制竞争者 演替中的物种更替,如森林中的优势树种和杂草
共生种 有效的繁殖 关键的共生种依赖的植物资源传粉者、传播者
掘土者 物理干扰 兔子、地鼠、白蚁、河狸、河马
系统过程调控者 影响养分传输速率 固氮菌、菌根真菌分解者
3.功能群的划分及其意义
    为了更好地认识生物多样性与生物群落结构和功能的关系,有必要引入功能群的概念。功能群是具有相似的结构或功能的物种的集合,这些物种对生物群落具有相似的作用,其成员相互取代后对生物群落过程具有较小的影响。将生物群落中的物种分成不同的功能群的意义表现在:(1)使复杂的生物群落简化,有利于认识系统的结构和功能(2)弱化了物种的个别作用,从而强调了物种的集体作用。
    根据研究的目的不同,划分功能者的标准会有较大的变化。一个功能群的物种数目没有明确的限制,可以是一个种,也可以是很多种。
    对于一个复杂的生物群落,最简单的划分法是将所有生物分为3个功能群,即生产者、消费者、分解者。
    植物功能群的划分可依据:生活型、形态结构、生理特点、外貌特点、叶片和根系等的水平和垂直分布格局和物候学特征等。
三. 岛屿化群落的结构特征
(一)岛屿生物学原理
1.岛屿的概念
    岛屿性(Insularity)是生物地理所具备的普遍特征。岛屿通常是指历史上地质运动形成,被海水包围和分隔开来的小块陆地。许多自然生境,例如溪流、山洞以及其它边界明显的生态系统都可看作是大小、形状和隔离程度不同的岛屿。有些陆地生境也可看成是岛屿,例如,林中的沼泽、被沙漠围绕的高山、间断的高山草甸、片段化的森林和保护区等。由于人类活动的影响,自然景观的片段化(Fragmentation),也是产生生境岛屿的重要原因。由于物种在岛屿之间的迁移扩散很少,对生物来讲岛屿就意味着栖息地的片段化和隔离。
2、岛屿的种数椕婊叵?/P>
    早在60年代,生态学家就发现岛屿上的物种数明显比邻近大陆的少,并且面积越小,距离大陆越远,物种数目就越少。在气候条件相对一致的区域中,岛屿中的物种数与岛屿面积有密切关系,许多研究表明,岛屿面积越大,种数越多。Preston(1962)将这一关系用简单方程描述:
    S=CAZ
    该公式经过对数转换后,变为: logs=ZlogA+C  式中S是面积为A的岛屿上某一分类群物种的数目,C,Z为常数。参数C取决于分类类群和生物地理区域,其生物学意义不大;而参数Z,即经过对数转换后直线的斜率,则具有较大的生物学意义。
    例如,当Z=0.5时,只需要将岛屿面积增加4倍,即可将物种数加倍。但当Z=0.14时,必需使面积增加140倍才能将物种数加倍。Darlington(1957) 关于岛屿面积增加10倍,岛屿上的动物种数加倍的结论,即是Z=0.3时的特殊情况。
设S1=CAZ,那么,当岛屿面积增加10倍,S2=C(10A)Z, 所以S2/S1=10Z=100.03=2
此种情况表示,如果原始生态系统只有10%的面积保存下来,那么,该生态系统有50%的物种丢失;如果1%的面积保存下来,则该生态系统有75%的物种丢失。
3、物种数目分布的机制与假说
对于物种数目随面积和隔离度变化的原因,主要有以下假说:
(1)平衡假说(Equilibrium hypothesis)
    
平衡假说中物种数和面积的关系机制
    MacArthur 和Wilson(1967)认为,岛屿上物种数目是迁入和消失之间动态平衡的结果。如图,物种迁入率(I) 随物种数(S)增加而逐渐下降,而消失率 (E) 却逐渐上升,这主要是由于竞争压力的作用。当I=E时,达到平衡物种数(S)。当面积增加时,迁入率曲线上升至I1,消失率曲线下降至E1,当I1=E1时,达到新的平衡数目S1,比原平衡数目S大。反之亦然。当迁入率 (I)=消失率 (E)时形成平衡物种数目S,若面积增加,则形成新的平衡物种数目S1,且S1>S;反之,有S2,S2<S。
    根据平衡假说,隔离度越大,物种数应越小。因为迁入率(I)变小,平衡物种数也小。迁移扩散在决定物种数目上起着重要作用。例如,鸟类能飞行,岛屿中鸟类物种数目占大陆的百分比往往要高于岛屿陆生兽类占大陆的百分比。
    岛屿中的物种,其物种消失率的增加,往往是由于种群生存面积不足时会导致遗传多样性的丧失,降低了物种的适应力。种群变小增加了种群随机灭绝的概率。这就是平衡假说中的岛屿面积效应。
(2)栖息地异质性假说(Habitat heterogeneity hypothesis)
    William(1964)认为面积增加包含了更多类型的栖息地,因而应有更多的物种可以存在。Westman(1983)和Buckley(1982)也认为物种随岛屿面积增加而增加的原因是由于栖息地增加的结果,而不是平衡假说中岛屿面积效应的结果。
(3)随机样本假说(Random sampling hypothesis)
    认为物种在不同大小岛屿上的分布是随机的,大的岛屿只不过是大的样本,因而包含着较多的物种。Dunn和Loehle(1988)指为,取样范围会影响物种数一面积的关系。如果取样范围过窄,就很可能反映不出物种数随面积增大而增加的趋势。
4、岛屿化与群落结构
生境发生片段化后,生境岛屿的理化和生物学因素都会发生一系列变化。
1. 物种组成的改变。生境片段化后,由于群落内生境的改变,其物种组成会有明显的变化,群落内原有的一部分物种会消失,同时由于边缘效应的增加,也会有一部分外来物种的侵入。
2. 片段化能改变群落中很多重要的生态关系,如捕食椓晕铩⒓纳鷹寄主、植物棿壅摺⒕赫⒐采认嗷ス叵怠?/LI>
3. 生境片段化能通过影响群落的物质循环,进而影响土壤动物和微生物和活动。
4. 生境片段化影响着物种迁入率和灭绝率。生境片段化主要通过生物的生存空间,高度片段的占有率,个体增补率(recruitment)等影响种群的灭绝。
⑤生境片段化导致种群变小,直接影响种群的遗传变异。
5、岛屿生态与自然保育
    自然保护区在某种意义上讲,是受其周围生境“海洋”所包围的岛屿,因此岛屿生态理论对自然保护区的设计具有指导意义。
(1)保护区地点的选择
    为了保护生物多样性,应首先考虑选择具有最丰富物种的地方作为保护区,另外,特有种、受威胁种和濒危物种也应放在同等重要的位置上。Gilbert(1980)特别强调了关键互惠共生种(Keystome mutualist)保护的重要性。Gilbert(1980)认为有些生态系统(如热带森林)中的动物(如蜜蜂、蚂蚁等)是多种植物完成其生活史必不可少的,它们被称为流动联接种(Mobile links),由于这些植物是流动联接种食物的主要来源,所以支持流动联接种的植物又称为关键互惠共生种。关键互惠共生种的丢失将导致流动联结种的灭绝。因此,在选择保护区时,保护区必须有足够复杂的生境类型,保护关键种,特别是关键互惠共生种的生存。
(2)保护区的面积
    按平衡假说,保护区面积越大,对生物多样性保育越有利。Noss和Harris(1986)认为,对于保护区面积确定的关键问题是,我们对于目标物种的生物学特征往往并不十分清楚。因此,保护区的面积确定必须在充分了解物种的行为(Karieva,1987;Merriam,1991)、传播方式(Mader,1984),与其它物种的相互关系和在生态系统中的地位等(Tibert,1980;Pimm,1992)的基础上才能进行。此外,保护区周围的生态系统与保护区的相似也是保护区确定面积时要考虑的。如果保护区被周围相似的生态系统所包围,其面积可小一些,反之,则适当增加保护区面积。
(3)保护区的形状
    Wilson(1975)认为,保护区的最佳形状是圆形,应避免狭长形的保护区。主要是因为考虑到边缘效应,狭长保护区不如圆形的好。另外,狭长形的保护区造价高(如图样),保护区也易于受人为的影响。但Blouin和Connor(1985)认为,如果狭长形的保护区包含较复杂的生境和植被类型,狭长形保护区反而更好。
(4)一个大保护区还是几个小保护区好?
    许多研究认为,一个大的保护区比几个小保护区好。这是因为大的岛屿含有更多的物种。由于保护区的隔离作用,保护区的物种数可能超出保护区的承载力,从而使有些物种灭绝。
    栖息地异质性假说认为,物种数随面积的增加主要由于栖息地异质性增加。它不赞同在同一地区设置太大的保护区,因为其异质性是有限的。故建议从较大地理尺度上选择多个小型保护区。
(5)保护区之间的连接和廊道
    一般认为,几个保护区通过廊道连接起来,要比几个相互隔离的保护区好。这是因为,物种可以廊道为踏脚石岛(Stepping Stone Islands),不断地进入保护区内,从而补充局部的物种灭绝。
(6)景观的保护
    对于保护区的建立,大多数的研究主要考虑遗传多样性和物种多样性,而忽视了更高水平的保护。许多学者现在倾向对整个群落的保护,而景观水平的探索和研究越来越引起人们的重视。
 第三节 群落的演替
一.演替和演替顶极的概念
    演替(succession)是一个群落为另一个群落所取代的过程,它是群落动态的一个最重要的特征。演替导向稳定性,是群落生态学的一个首要的和共同的法则,并为自然科学作出重大贡献。目前,依然是现代生态学的中心课题之一,是解决人类现在生态危机的基础,也是恢复生态学的理论基础。
    演替顶极(climax)是美国学者Clements(1916,1928,1938)提出的,是指演替最终的成熟群落,或称为顶极群落(climax community)。顶极群落的种类称为顶极种(Climax species),彼此间在发展起来的环境中,很好地互相配合,它们能够在群落内繁殖、更新,而且排斥新的种类,特别是可能成为优势的种类在群落中定居。顶极群落无论在区系和结构上,以及它们相互之间的关系和与环境相互间的关系,都趋于稳定,演替顶极意味着一个自然群落中的一种稳定情况。
    在真实的生物群落中,演替顶极是不确定的,各地均有所不同,从而形成大规模土壤变化所引起的镶嵌更新状态或镶嵌演替。Horm(1974)论证顶极植物受到轻微的扰动将导致被压种的侵入和恢复,这两种变化可使多样性增加,这预示着演替的最后阶段大概包括多样性的下降。
二.群落形成的过程
群落的形成过程,可简单地分为三个阶段:
1、开敞或先锋群落阶段
    这一阶段的特征是一些生态幅度较大的物种侵入定居并获得成功,虽然刚开始时这些物种中仅少数个体能幸存下来繁殖后代,或只有很小的一部分在生境中存活下来,但这种初步建立起来的种群却对以后环境的改造,为以后相继侵入定居的同种或异种个体起了极其重要的奠基作用。
2、郁闭未稳定的阶段
    随着群落的发展,种群数量的增加,当有一定数量的物种后,生活小区逐渐得到改善。
    资源的利用逐渐由不完善到充分利用。因此,在这一阶段,物种之间的竞争激烈,有的物种定居下来,且得到了繁殖的机会,而另一些物种则被排斥。同时,那些能充分利用自然资源又能在物种的相互竞争中共存下来的物种得到了发展,他们从不同角度利用和分摊资源。通过竞争,逐渐达到相对平衡。
3、郁闭稳定的阶段
    物种通过竞争平衡地进入协调进化,使资源的利用更为充分、有效。有时可能再增加一些共存的物种,使群落在结构上更加完善,使群落发展成为与当地气候相一致的顶极群落,这时群落有比较固定的物种组成和数量比例,群落结构也较为复杂。
    群落形成的上述三个阶段,只是一种认为的划分方法。其实,群落的形成发展和演替是一个连续不断变化的过程,一个阶段的结束和另一个阶段的开始并没有截然的界限。
三.演替系列
    一个先锋群落在裸地形成后,演替便会发生。一个群落接着一个群落相继不断地为另一个群落所代替,直至顶极群落,这一系列的演替过程就构成了一个演替系列。
(一)原生演替系列
    原生演替(primary succession)是开始于原生裸地或原生芜原(完全没有植被并且也没有任何植物繁殖体存在的裸露地段)上的群落演替。原生演替系列包括从岩石开始的旱生演替和从湖底开始的水生演替。
1. 旱生演替系列
①地衣植物阶段
    裸岩表面最先出现的是地衣植物,其中以壳状地衣首先定居。壳状地衣将极薄的一层植物紧帖在岩石表面,由于假根分泌溶蚀性的碳酸而使岩石变得松脆,并机械地促使岩石表层萌解。它们可能积聚一层堆积物的薄膜,并在某些情况下,一个或多个后继地衣群落取代了先锋群落。通常后继者首先是叶状地衣,叶状地衣可以积蓄更多的水分,积蓄更多的残体,而使土壤增加得更快些。在叶状地衣群落将岩石表面覆盖的地方,枝状地衣出现,枝状地衣生长能力强,逐渐可完全取代叶状地衣群落。地衣群落阶段在整个演替系列过程中延续的时间最长。这一阶段前期基本上仅有微生物共存,以后逐渐有一些如螨类的微小动物出现。
②苔藓植物阶段
    苔藓植物生长在岩石表面上与地衣植物类似,在干旱时期,可以停止生长并进入休眠,等到温暖多雨时,可大量生长,它们积累的土壤更多些,为后来生长的植物创造更好的条件。苔藓植物阶段出现的动物,与地衣群落相似,以螨类等腐食性或植食性的小型无脊椎动物。
③草本植物阶段
    群落演替进入草本群落阶段,首先出现的是蕨类植物和一些一年生或二年生的草本植物,它们大多是短小和耐旱的种类,并早已以个别植株出现于苔藓群落中,随着群落的演替大量增殖而取代苔藓植物。随着土壤的继续增加和饿小气候的开始形成,多年生草本相继出现。草本群落阶段中,原有的岩石表面环境条件有了较大的改变,首先在草丛郁闭条件下,土壤增厚,蒸发减少进而调节了温度和湿度。此时植食性、食虫性鸟类、野兔等中型哺乳动物数量不断增加,使群落的物种多样性增加,食物链变长,食物网等营养结构变得更为复杂。
④灌木植物阶段
    这一阶段,首先出现的是一些喜光的阳性灌木,它们常与高草混生形成高草灌木群落,以后灌木大量增加,成为优势的灌木群落。在这一阶段,食草性的昆虫逐渐减少,吃浆果,栖灌丛的鸟类会明显增加。林下哺乳类动物数量增多,活动更趋活跃,一些大型动物也会时而出没其中。
⑤乔木植物阶段
    灌木群落的进一步发展,阳性的乔木树种开始在群落中出现,并逐渐发展成森林。至此,林下形成荫蔽环境,使耐荫的树种得以定居。耐荫树种的增加,使阳性树种不能在群落内更新而逐渐从群落中消失,林下生长耐荫的灌木和草本植物的复合的森林群落就形成了。在这个阶段,动物群落变得极为复杂,大型动物开始定居繁殖,各个营养级的动物数量都明显增加,互相竞争,互相制约,使整个生物群落的结构变得更加复杂、稳定。
2.水生演替系列
①自由漂浮植物阶段
    这一阶段,湖底有机物的聚积,主要依靠浮游有机体的死亡残体,以及湖岸雨水冲刷所带来的矿质微粒。天长日九,湖底逐渐抬高。
②沉水植物群落阶段
    水深3-5米以下首先出现的是轮藻属的植物,构成湖底裸地上的先锋植物群落。由于它的生长,湖底有机物积累加快,同时由于它们的残体在嫌气条件下分解不完全,湖底进一步抬高,水域变浅,继而金鱼藻、弧尾藻、黑藻、茨藻等高等水生植物种类出现。这些植物的生长能力强,垫高湖底作用的能力也就更强。此时大型鱼类减少,而小型鱼类增多。
③浮叶根生植物群落阶段
    随着湖底变浅,出现了浮叶根生植物如眼子菜、莲、菱、芡实等。由于这些植物的叶在水面上,当它们密集后就将水面完全覆盖,使其光照条件变得不利于沉水植物的生长,原有的沉水植物将被挤到更深的水域。浮叶根生植物高大,积累有机物的能力更强,垫高湖底的作用也更强。,
④挺水植物群落阶段
    水体继续变浅,出现了挺水植物,如芦苇、香蒲、水葱等。其中,芦苇最常见,其根茎极为茂密,常交织在一起,不仅使湖底迅速抬高,而且可形成浮岛,开始具有陆生环境的一些特点。这一阶段的鱼类进一步减少,而两栖类、水蛭、泥鳅及水生昆虫进一步增多。
⑤湿生草本植物阶段
    湖底露出地面后,原有的挺水植物因不能适应新的环境,而被一些禾本科、莎草科和灯心草科的湿生植物所取代。由于地面蒸发加强,地下水位下降,湿生草本群落逐渐被中生草本植物群落所取代。在适宜的条件下发育为木本群落。
⑥木本植物阶段
    在湿生草本植物群落中,首先出现的是一些湿生灌木,如柳属、桦属的 一些种,继而乔木侵入逐渐形成森林。此时,原有的湿地生境也随之逐渐变成中生生境。在群落内分布有各种鸟类、兽类、爬行类、两栖类和昆虫等,土壤有蚯蚓、线虫及多种土壤微生物。整个水生演替系列实际上是湖沼填平的过程,通常是从湖沼的周围向湖沼的中心顺序发生的。
(二)次生演替系列
    次生演替(secondary succession)是指开始于次生裸地或次生芜原(不存在植被,但在土壤或基质中保留有植物繁殖体的裸地)上的群落演替。下面我们介绍亚热带东部常绿阔叶林群落和草原的次生演替。




1.亚热带东部常绿阔叶林的次生演替
    
   上述演替过程的长短,主要决定于群落受干扰的强度和所持续的时间。如果常绿阔叶林群落遭破坏和采伐的面积过大,或遭反复破坏,附近又缺乏种源,则容易造成水土流失。植被的进展演替过程会相当缓慢,甚至可能向相反的方向发展。
   在森林群落的演替过程中,动物群落的演替也是十分明显的。如美国纽约州中部针叶林演替过程中,在草本植物群落阶段,生境比较开阔,蜜蜂、蝗虫、田鼠、野兔、百灵等是此时的代表动物。随着树木的出现,成层现象便日益明显,生境改变了,一年生植物时期的一些代表动物让位于其它动物,如白足鼠、红松鼠等取代了田鼠和棉尾兔;莺、维鹂等取代了百灵、蝗雀、等鸟类。总之每一个演替时期都有其特有的代表动物。
2.草原的放牧演替
    
    草原群落的次生演替主要取决于对草原的利用方式。在没有放牧的情况下,草原由于水分条件的改善,会演替到中生化的草甸,但在强烈放牧情况下,草原会向旱生化的方向发展,并随着放牧强度的加大,草原会逐渐发展到接近于荒漠带的一些植物群落。这种现象和水分条件的恶化有关。土壤在强烈的牲畜践踏下变得坚实,其上层的正常结构遭到破坏,结果土壤的表面蒸发加强,水分情况因此恶化。
四.演替进展与逆行
    群落的演替显示着群落是从先锋群落经过一系列的阶段,到达中生性顶极群落。这种沿着顺序阶段向着顶极群落的演替过程称之为进展演替(progressive succession)。反之,如果是由顶极群落向着先锋群落演变,则称之为逆行演替(retrogressive succession)。
    表 进展演替和逆行演替特征
进展演替 逆行演替
群落结构的复杂化 群落结构的简单化
地面的最大利用 地面的不充分利用
生产力的最大利用 生产力的不充分利用
群落生产力的增加 群落生产力的降低
新兴特有现象的存在,以及对植物环境特殊适应为方向的物种形成 残遗特有现象的存在,以及对外界环境的为方向的物种形成
群落的中生化 群落的旱生化和湿生化
群落环境的强烈改造 外界环境的轻微改造
 
Odum(1969,1976)认为演替是一个带有合乎道理的方向性的有序过程,因此可以预测;演替是群落改变物理环境的结果,因而可以控制,即“群落控制”(community controlled);演替最后走向具有自我平衡(homeostasis)性质的稳态(顶极群落)。其演替的预期趋势如表。
 
表 演替的预期趋势(Odum, 1976)
项目 生态系统特征 演替阶段 顶极阶段
群落结构 种类组成 改变快速 改变极小
  个体大小 小 大
  自养生物的种类 增长 减少
  异养生物的种类 增长 减少
  物种多样性 低 高
  总生物量 小 大
  非生命有机物质 少 多
能流 总生产量(Pg) 增加 减少
  净生产量(Pn) 高 低
  群落呼吸量 低 高
  Pg/R ﹥1 =1
  Pg/B(生物量) 高 低
  单位能量所支持的生物量 高 低
  食物链 线状 网状
生物地化循环 矿物质循环 开放性 封闭性
  生物与环境间营养物质交流速度 快 慢
  碎屑物的作用 少 增加
  养分保持能力 弱 良好
选择与调节 增长 快速增长 反馈调节
  生产 数量变化 质量变化
  生物间共性 弱 强
  稳定性(抗干扰力) 弱 良好
  生态位特化 宽 狭
  生命周期 短而简单 长而复杂
  信息 低 高
五.演替的理论
1.单元顶极假说(monoclimax theory)
    该学说由美国的Clements(1916)提出,认为一个地区的全部演替都将会聚为一个单一、稳定、成熟的植物群落或顶极群落。这种顶极群落的特征只取决于气候。给以充分时间,演替过程和群落造成环境的改变将克服地形位置和母质差异的影响。至少在原则上,在一个气候区域内的所有生境中,最后都将是同一的顶极群落。该假说并把群落和单个有机体相比拟。
2.多元顶极理论(polyclimax theory)
    由英国的A.G.Tansley(1954)提出,这个学说认为:如果一个群落在某种生境中基本稳定,能自行繁殖并结束它的演替过程,就可看作是顶极群落。在一个气候区域内,群落演替的最终结果,不一定都要汇集于一个共同的气候顶极终点。除了气候顶极之外,还可有土壤顶极、地形顶极、火烧顶极、动物顶极;同时还可存在一些复合型的顶极,如地形-土壤和火烧-动物顶极等等。
3.顶极-格局假说(climax pattern hypothesis)
    由美国Whittaker(1953)提出,首先它认为植物群落虽然由于地形、土壤的显著差异及干扰,必然产生某些不连续,但从整体上看,植物群落是一个相互交织的连续体。其次,认为景观中的种各以自己的方式对环境因素进行独特的反应,种常常以许多不同的方式结合到一个景观的多数群落中去,并以不同方式参与构成不同的群落,种并不是简单地属于特殊群落相应明确的类群。这样,一个景观的植被所包含的与其说是明确的块状镶嵌,不如说是一些由连续交织的种参与的、彼此相互联系的复杂而精巧的群落配置。
4.初始植物区系学说(initial floristic theory)
    该学说是Egler于1954年提出来的,他认为任何一个地点的演替都取决于哪些物种首先到达那里。植物种的取代不一定是有序的,每一个种都试图排挤和压制任何新来的定居者,使演替带有较强的个体性。演替并不一定总是朝着顶极群落的方向发展,所以演替的详细途径是难以预测的。该学说认为,演替通常是由个体较小,生长较快,寿命较短的种发展为个体较大,生长较慢,寿命较长的种。显然,这种替代过程是种间的,而不是群落间的,因而演替系列是连续的而不是离散的。这一学说也被称为抑制作用理论。
5. 忍耐作用说(tolerance theory)
    这是Conell 和Slatyer于1977年提出的,他们提出了三重机制说,包括促进理论和抑制理论。忍耐理论认为,演替早期先锋种的存在并不重要,任何种都可以开始演替。植物替代伴随着环境资源的递减,较能忍受有限资源的物种将会取代其它条件。演替就是靠这些种的入侵和原来定居物种的逐渐减少而进行的,主要取决于初始条件。
6. 适应对策演替理论(adapting strategy theory)
    该理论是Grime于1989年提出来的,他通过对植物适应对策的详细研究,在传统r-对策和k-对策的基础上,提出了植物的三种基本对策:R-对策种,适应于临时性资源丰富的环境;C-对策种,生存于资源一直处于丰富状生境中,竞争力强,称为竞争种;S-对策种,适用于资源贫瘠的生境,忍耐恶劣环境的能力强,叫做忍耐胁迫中。该学说认为,次生演替过程中的物种对策格局是有规律的,是可预测的。一般情况下,先锋种为R-对策,演替中期的种多为C-对策,而顶极群落中中则多为S-对策种。该学说对从物种的生活史、适应对策方面而理解演替过程作出了新的贡献。
7. 资源比率理论(resource ratio hypothesis)
    该理论是Tilmam于1985年基于植物资源竞争理论提出的。它认为,一个种在限制性资源比率为某一值时表现为强竞争者,而当限制性资源比率改变时,因为种的竞争能力之不同,组成群落的植物种已随之改变。因此,演替是通过资源的变化而引起竞争关系变化而实现的。该理论与促进作用演说有很大的相似指出。
 Re:[转贴]群落生态学和生态系统生态学笔记

8. 等级演替理论(hierarchical succession theory)
    该理论是Pickett等于1987年提出的 ,他们提出了一个关于演替原因和机制的登记概念框架有三个基本层次;第一,是演替的一般性原因,即裸地的可利用性,物种对裸地利用能力的差异,物种对不同裸地的适应能力;第二层次以上的基本原因分解为不同的生态过程,比如裸地可利用性决定于干扰的频度和程度,对裸地的利用能力决定于种繁殖体生产力、传播能力、萌发和生长能力等;第三层次是最详细的机制水平,包括立地-种因素和行为及其相互作用,这些相互作用是演替的本质。这一理论较详细地分析了演替的原因,并考虑了大部分因素,它有利于演替分析结果的解释。由于演替存在着明显的景观层次,各层次的动态又与演替的机理相关,因而该学说被认为是最有前途形成统一的演替理论框架的理论。
    演替的机制理论尚有其它一些理论,但较有影响的主要是上述几种。
六.演替的模型
1.演替的时间函数
次生群落的演替过程,实际上我们可将之视为时间的函数。可用下面的函数来表示:
V=f(t)cl,p,r,o,py
式中,cl为气候参数,p为岩石圈参数,r为土壤参数,o为生物参数,py为热量参数。这些参数本身也是复合函数,因而V的实际应用应是很难的。但作为单因素的研究却是可能的。
2.群落的演替过程与模型
    群落演替是一个动态的过程,在随时间的发展中,总有一些物种取代另一些物种,一个群落取代另一个群落的过程。在自然条件下,群落的演替总是遵循客观规律,从先锋群落经过一系列演替阶段而达到中生性的顶极群落,通过不同途径向着气候顶极或最优化的生态系统发展。对区域的群落的演替过程进行分析,有助于对退化生态系统恢复和重建的实践进行方向性的指导。下面我们以南亚热带森林群落的演替为例,说明如何用马尔柯夫模型来进行描述。
(1)南亚热带森林植被演替的过程分析
    在南亚热带区域,在排除人为干扰的情况下,森林群落的演替进程一般遵循以下的过程。
演替阶段 群落类型
第一阶段 针叶林或其它先锋群落
第二阶段 以针叶树种为主的针阔叶混交林
第三阶段 以阳性阔叶树种为主的针阔叶混交林
第四阶段 以阳性植物为主的常绿阔叶林
第五阶段 以中生植物为主的常绿阔叶林
第六阶段 中生群落(顶极0
 
(2)植物群落演替的模型
    植物群落的演替过程可以用马尔柯夫模型来表述。演替的线形模型可以通过马氏链来描述。如果我们把每个演替过程的阶段视为一个子系统或一个状态,植物群落的演替系列就是一个系统。在这个过程中,一个群落从一个阶段演变为另一个阶段,就意味着一个系统从一个状态变为另一个状态。如果群落的这种线形演替系统是一个确定的演替过程,演替要经历z个过程,其转移矩阵是(P),则其线形系统的行为可以描述如下图:
            
    为了满足转移矩阵(P)稳定,我们需要假定植物的死亡率是不变的,这就意味着排除人类对演替的干扰因素。根据上述的公式,在相同的时间间隔中,演替的后一个状态可以由前一个状态所决定。其关系为:X2=PTX1,X3=PTX2等,这样我们得到一般公式:
    Xi+1=PTXi
在这个公式中,i=1,2,3 …… n;PT=转移矩阵(P);Xi为:
P11
P21
Xi=Pml
    Xi为i时刻的状态向量,其分量P11、P21、…、Pml是i时刻群落中m个成分各占的百分比,亦即概率。从一个状态变为另一个状态的森林群落演替可以由种群的发展来加以说明。根据统计数据,用不同种的相对多度为指标。
    线形模型有一些严格的假设,诸如假设演替过程其种群的死亡率不变,这在真实情况下是不可能的。事实上,生境和种间关系是不断变化的,死亡率也不可能稳定。在自然条件下不存在严格的线形系统,一些系统只能说是非线形系统,非线形演替模型是普遍的。非线形系统的研究复杂的多。然而,尽管整个演替是非线形的,而其分阶段可以认为是线形的或接近线形的。可以将整个演替过程切割为若干亚系统,形成局部线形化。这样基于
X2=PT1X1,X3=PT2X2 … 等来计算,则有一般式:
Xi+1=PiTXi
式中Xi 为演替过程的i状态(阶段),PiT为i状态中的转移矩阵,i=1,2,3 …… Z(Z为演替的终极状态)。这样可以对非线形演替系统的动态进行预测。
    彭少麟、王泊荪(1995)利用上述模型研究了的南亚热带常绿阔叶林不同树种成分的更替率。
    南亚热带群落更替过程林木成分更替表
今后25年现在 马尾松等先锋种 椎树、木荷等阳性常绿阔叶树种 厚壳桂、黄果厚壳桂等耐阴性常绿阔叶树种
马尾松等先锋种 20+6 66 8
椎树、木荷等阳性常绿阔叶树种 1 44+12 43
厚壳桂、黄果厚壳桂等耐阴性常绿阔叶树种 0 4 69+27
注:表中主对角线数据为该类种群25年后成活百分率加上25年间为同类种群所更替的百分率。
这意味着(P)可确定如下:
   0.26 0.66 0.08
P= 0.01 0.56 0.48
   0.00 0.04 0.96
    根据调查,在马尾松或其它先锋林中,先锋种群的多度为90%,其它10%为地带性的常绿阳性树种。根据递推公式和(P),演替过程不同树种的成分变化可以计算得出,基于此可以划分演替阶段、预期演替过程和动态方向(如下表)。另外用非线形模型研究的结果如表。
    表 南亚热带森林群落不同演替阶段的时间划分
林 龄(年) 0 ﹤25 25-50 50-75 75-150 150-∝
演替阶段     马尾松等先锋群落 以针叶乔木为优势的针阔叶混交林 以椎树、木荷等阳性常绿阔叶树种为优势的针阔叶混交林 以椎树、木荷等阳性常绿阔叶树种为优势的常绿阔叶林 以厚壳桂、黄果厚壳桂等耐阴植物为优势的常绿阔叶林 中生性常绿阔叶林
 
表 南亚热带森林群落演替过程林木成分线形预测
林龄 0 25 50 75 100 125 150 175 200 … ∝
马尾松等先锋树种 90 24 7 2 0 0 0 0 0 … 0
椎树、木荷等阳性树种 10 65 53 36 23 15 11 9 8 … 6
厚壳桂、黄果厚壳桂等 0 11 40 62 77 86 89 91 92 … 94
 
表 南亚热带森林群落演替过程林木成分线形预测
林龄 0 25 50 75 100 125 150 175 200 … ∝
马尾松等先锋树种 90 27 7 3 1 0 0 0 0 … 0
椎树、木荷等阳性树种 10 62 55 39 28 15 10 7 5 … 4
厚壳桂、黄果厚壳桂等 0 11 38 58 71 85 90 93 95 … 96
   以上研究展示南亚热带森林群落演替的一般过程、规律、方向和速度,结果表明南亚热带森林群落演替的进展是较迅速的,退化生态系统的植被的恢复与重建,完全可以依据其演替发展的一般规律,人为地进行种类构建,加速退化生态系统的植被恢复
 Re:[转贴]群落生态学和生态系统生态学笔记

第四节 世界主要生物群落类型及分布规律
因受地理位置、气候、地形、土壤等因素的影响,地球上的生物群落是多种多样的。
    首先生物群落可分为陆地生物群落和水生生物群落。本节将着重介绍陆地生物群落的类型和分布。
    生物群落的划分是以植被的分类为基础的,地球上的植被类型虽然很复杂,但在陆地上呈大面积分布的地带性生物群落(biome)主要有以下几类:
森林:热带雨林
      常绿阔叶林
      落叶阔叶林
      北方针叶林
草原:稀树草原
      草原
      荒漠
      苔原
一.陆地生物群落的主要类型
(一)热带雨林
      1.热带雨林是指分布于赤道附近的南北纬10℃之间的低海拔高温多湿地区,由热带种类所组成的高大繁茂、终年常绿的森林群落,为地球表面最为繁茂的植被类型。
      2.植被特征:①种类组成特别丰富,均为热带分布的种类。②群落结构复杂:层次多而分层不明显,乔木高大挺直,分枝少,灌木成小树状,群落中附寄生植物发达,有叶面附生现象,富有粗大的木质藤本和绞杀植物。③乔木树种构造特殊:多具板状根、气生根、老茎生花等现象;叶子在大小形状上非常一致,全绿,革质,中等大小;多昆虫传粉。④林冠高低错落,色彩不一,无明显季相交替,终年常绿。
3.分布:主要分布于南北纬度10℃之间的区域,全球可分为三大群系。
     ①美洲雨林群系:主要分布亚马逊河流域,面积最大。
     ②非洲雨林群系:主要分布刚果盆地一带。
     ③亚洲雨林群系:主要分布在马来半岛、苏门答腊附近岛屿、婆罗洲、伊里安及菲律宾群岛。向西可达缅甸和印度的阿萨姆,向北经中南半岛可达中国的台湾、广东及云南南部,向东南可一直延伸到澳大利亚大陆的东部。以龙脑香科植物为标志。
     ④我国的热带雨林为北方边缘,不很典型,分布于台湾、两广、藏、滇的南部。群落中绞杀植物较多,但龙脑香科的种类不多。可分为湿润雨林、季雨林、山地雨林三个植被亚型。
     4.动物及其生态。热带雨林中种类很多,但个体数量较少,且特化种类较多。动物的活动性低,很少有季节性的迁移现象,其生殖活动和数量变动受季节性的影响不明显。热带雨林中的代表动物主要有长臂猿、猩猩、眼镜蛇、懒猴、犀牛、蜂鸟、极乐鸟等。
(二)红树林
  1.指分布于热带滨海地区受周期性海水侵淹的一种淤泥海滩上生长的乔灌木植物落。
  2.植被特征:①主要由红树科的常绿种类组成,其次为马鞭草科、海桑科、爵床科等的种类,共10余科,30多种。②外貌终年常绿,林相整齐,结构简单,多为低矮性群落。③具特殊的胎生现象,具支柱根或呼吸根,以及旱生、盐生的形态和生理特点。
3. 分布:有两个分布中心。
①东方红树林:分布于太平洋和印度洋沿岸的热带、亚热带滨海地区。
②西方红树林:分布于太平洋东岸和大西洋沿岸的热带、亚热带滨海地区。
③我国的红树林属东方红树林的一部分,主要分布于广东、福建沿海、广西和台湾。
4. 动物及其生态:生活在红树林中的哺乳动物种类和数量都较少,较为广泛分布的是水獭,东南亚红树林中有吃书叶的各种猴子,如长鼻猴和天狗猴等。两栖动物大都避开这种咸淡水环境。鸟类以苍鹭、鸬鹚、翠鸟和鹗等较为常见,鱼类以弹涂鱼为最多。其它有多种蟹类、藤壶类、蚊类、蠓类等生活在其中。
(三)热带季雨林
1. 指分布于热带有周期性干湿交替地区的,由热带种类所组成的森林群落。
2. 植物群落特征:①旱季乔木树种部分或全部落叶,季相变化明显。②种类组成、结构、高度等均不及雨林发达。③板状根、茎花现象、木质大藤、附生植物等均不及雨林发达。
3. 分布:不连续分布在亚洲、非洲和美洲的热带地区,其中以亚洲东南部最为发达。
4. 动物及其生态:由于该群落类型一方面与常绿雨林相毗邻,另一方面又与稀树草原想接壤,因此其动物区系,具有明显的过渡区或群落交错区的特征。常见的动物有独角犀、亚洲虎、野猪、印度野牛、原鸡、叶猴、罗猴、懒熊等等。
(四)热带旱生林
    分布于热带干燥或半干燥的低海拔地区,小而多刺的乔木或灌木植物在群落中占优势。典型的植物有瓶子树、猴面包树、金合欢、大戟科和仙人掌科的一些肉质植物。大多数植物在旱季无叶,而在雨季十分繁茂。
(五)热带稀树草原
    指分布于热带干燥地区,以喜高温、旱生的多年生草本植物占优势,并稀疏散布有耐旱、矮生乔木的植物群落。散生在草原背景中的乔木矮生且多分枝,具大而扁平的伞形树冠,叶片坚硬,具典型旱生结构。草本层以高约1米的禾本科植物占优势,亦具典型旱生结构。藤本植物非常稀少,附生植物不存在。该群落类型主要分布在非洲、南北美洲、澳洲和亚洲。我国在云南干热河谷,海南岛北部,雷州半岛和台湾的西南部均有分布。
(六)荒漠和半荒漠
    分布在亚热带和温带(纬度30~40°之间)的副热带无风地区。例如,南美西岸的智利和阿根廷,非洲的西海岸,南非荒漠,澳大利亚荒漠等。最大的是连接亚洲的大沙漠,包括北非的撒哈拉沙漠、阿拉伯沙漠、中亚大沙漠和东亚大沙漠,后者包括我国的柴达木、准葛尔、塔里木、阿拉善等沙漠。荒漠和半荒漠的年平均降雨量低于250㎜,季节性明显。
    在荒漠群落中,植物是一些特别耐旱的超旱生植物,他们从生理和形态结构上适应旱生环境,叶面缩小或退化,以小枝和茎代行光合作用,如猪毛菜属(Salsala)、碱蓬属(Suaecla)等。
    荒漠中的动物,多数有冬季和夏季休眠以及贮存大量食物以备越冬的习性。夜出性的种类所占比例较高。代表动物在欧亚大陆荒漠有三趾跳鼠亚科、沙鼠科的啮齿类动物。鸟类中有百灵、隼等;北美荒漠则有棉尾兔、更格尔鼠和小韦鼠等。南美有美洲鸵鸟。澳洲的荒漠上有袋鼠、袋鼹等。
(七) 亚热带常绿阔叶林
1.常绿阔叶林是指分布在亚热带大陆东岸湿润地区的,由常绿的双子叶植物所构成的森林群落。又称照叶林、月桂树林、樟栲林等。
2.植被特征:①主要由壳斗科、樟科、山茶科、木兰科和金缕梅科等的常绿树种组成,区系成分极其丰富,地理成分复杂,富有起源古老的孑遗植物,或系统进化上原始或孤立的科属及特有植物;乔木层树种具有樟科月桂树叶子的特征:小型叶、渐尖、革质、光亮、无茸毛、排列方向与光线垂直等。②外貌中年常绿,林相整齐,季相变化不明显。③群落结构较为复杂,林木层、下木层均有亚层次的分化,草本层以蕨类植物为主。④藤本植物较为丰富,但多为革质或木质小藤,板根、茎花、叶面附生现象大大减少,附生植物中很少有被子植物。
3.分布:主要分布在东亚的中国、日本、朝鲜半岛,北美的佛罗里达半岛和加利福尼亚,南美的智利,非洲的那利群岛,澳洲的澳大利亚、新西兰以及北大西洋的马德拉群岛和加那利群岛等地。
   我国是常绿阔叶林的集中分布区,面积最大,类型最多,南自南岭,北抵秦岭,西至青藏高原东缘,东到东南沿海岛屿,可分为北亚热带常绿、落叶阔叶混交林,中亚热带典型常绿阔叶林和南亚热带季风常绿阔叶林3个植被型,若干个植被亚型。
4.动物及其生态:亚热带常绿阔叶林内动物种类较为丰富,主要的哺乳动物是猴类和鹿类,著名的猴类为金丝猴、日本猴;鹿类如白唇鹿、毛冠鹿、白尾鹿等。中国西南地区分布的熊猫则是世界上最濒危的珍稀动物,被称为活化石。日本产的日本小睡鼠则是东亚产的唯一睡鼠,而澳大利亚的众多有袋动物都是独特的动物类群。
(八)硬叶常绿阔叶林
1.指分布于亚热带大陆西岸地中海式气候地区的,由硬叶常绿阔叶林树种所构成的森林群落。
2.植被特征:①主要由硬叶常绿阔叶树种所构成,其叶片具典型的旱生结构,坚硬革质,小型叶为主,被茸毛,无光泽,气孔深陷,排列与光线成锐角,或叶片退化(甚至成刺状),植株与花具强烈香味(挥发油);②森林群落上层稀疏,树木较矮小,群落下层较为繁茂、密闭;③无附生植物,藤本植物很少。多年生草本植物尤以具鳞、球、根茎的地下牙植物特别丰富。
3. 分布:主要有三个集中分布区
①欧洲的地中海沿海:主要由木栓栎、刺叶栎等组成。
②北美西岸的加利福尼亚:主要由密花栎和禾叶栎等组成。
③大洋州西南和东南地区:按树属、金合欢等属为主。
④我国为山地类型(夏多雨、冬干冷),主要分布在西南,尤以金沙江中上游河谷两侧
    山地为多,主要由高山栎等树种组成。
(九) 温带落叶阔叶林
1. 指分布于温带湿润海洋地区的,由落叶双子叶植物所构成的落叶森林群落。
2. 特征:①季相更替现象十分明显为其外貌的显著的特征;②中生性植物特别丰富,
乔木层有阔叶叶片、草质、柔软、无毛,生活型以地面芽和地下芽植物占优势,其次是高位芽植物;③结构简单,分层清楚,夏季林相郁闭,冬季林内明亮干燥;④层间植物在群落中作用不明显。
3. 分布:有三个集中分布区
①西欧和中欧:以山毛榉为主要建群种。
②北美的五大湖地区和大西洋沿岸:以美洲山毛榉和糖槭为建群种。
③东亚:主要分布在我国,以Quercus种群为代表。
④我国的落叶林分布面积较广,包括东北南部和华北大部,壳斗科的Quercus、
Castanea、Fagus在不同地区分别成为建群种。
4.动物及其生态:群落中消费者各有其特色,哺乳动物有鹿、獾、棕熊、野猪、狐、松鼠等,鸟类有野鸡、莺等,还有各种各样的昆虫。群落中净初级生产量仅养活着小量的动物,而动物的生物量又集中在土壤动物上。
(十)温带草原
    温带草原出现于中等程度干燥、较冷的大陆性气候地区。这种草原在北美、南美和欧洲都有分布。我国主要以内蒙古和大兴安岭以西的广大地区,向西逐渐过渡成荒漠。植被分层简单,以多年生的禾本科草类占优势,其中以针茅属植物最为丰富,还有沙草科、豆科等植物。有明显的季相变化。代表动物有高鼻羚羊、野驴、骆驼以及小型的黄鼠、跳鼠、仓鼠等,北美草原上有草原犬鼠、长耳兔、草原松鸡等。
(十一)北方针叶林
    冬季严寒,夏季温暖湿润,年温差较大。主要代表树种有云杉、冷杉和松。林冠一般不茂密,林下灌木、苔藓、地衣较多。代表动物有驼鹿、猞猁、紫貂、雪兔、狼獾、林莺、松鸡等。大部分有季节迁徙现象。该类型分布横跨亚、欧和北美温带地区。在我国主要分布于大兴安岭和阿尔泰山。
(十二)冻原
    冻原又称苔原,出现在高纬度和高海拔的寒冷地区,分布于欧亚大陆和饿北美北部沿海地区,也包括北冰洋中的岛屿。我国只有高山冻原,分布在长白山和阿尔泰山西部高山带。冻原的优势植物是多年生灌木、苔草、禾草、苔藓和地衣,植被的高度一般只有几厘米。冻原的典型动物有驯鹿、旅鼠、北极狐、北极黄鼠,在美洲还有麝香牛、雷鸟和雪枭。
二.群落分布规律
(一)概念
    地球表面的热量是随着所在纬度的位置而变化的,水分则随着距离海洋的远近,以及大气环流和洋流等的变化而变化。水热结合导致植被呈地带性分布,一方面沿纬度方向成带状发生有规律的更替,称为纬度地带性;另一方面从沿海向内陆方向成带状发生有规律的更替,称为经度地带性。此外,随着海拔高度的增加,气候、土壤和动植物群落也发生有规律的更替,称为垂直地带性。
2. 水平分布规律
1.纬度地带性分布规律
(1)世界植被纬度地带性分布规律
    北半球自北到南依次出现:寒带苔原→寒温带针叶林→温带落叶阔叶林→亚热带常绿阔叶林→热带雨林。
欧亚大陆中部和北美中部,自北向南依次出现:苔原→针叶林→落叶阔叶林→草原→荒漠。
(2)我国植被纬度地带性分布规律
    东部湿润森林区,自北向南依次为:寒温带针叶林→温带落叶阔叶林→北亚热带常绿落叶阔叶混交林→中亚热带常绿阔叶林→南亚热带季风常绿阔叶林→热带雨林、季雨林。
    西部内陆腹地,受强烈的大陆性气候的影响,由于青藏高原的隆起,从北至南出现的一系列东西走向的巨大山系,打破了原有的纬度地带性,因此自北向南的变化如下:
温带荒漠、半荒漠带→暖温带荒漠带→高寒荒漠带→高寒草原带→高寒山地灌丛草原带。
2.经度地带性分布规律
(1)世界植被经度地带性分布规律
    北美的中部,东面是大西洋,西面是太平洋,但被经向的落基山脉所阻隔,植被从东向西依次更替为:
(东)森林棗→草原棗→半荒漠棗→荒漠棗棗棗→森林(西)
                                  落基山脉
(2)我国植被经度地带性分布规律
    在我国温带地区表现较为明显,从东南至西北其变化规律如下:
    
(二)垂直分布规律
    山体的植被垂直带,是反映山体所处的一定纬度和饿一定经度的水平地带性的特征,植被垂直地带性是从属于水平地带性的特征,在水平地带性和饿垂直地带性的相互关系中,水平地带性是基础,它决定着山地垂直地带的系统。
     1.某一山体植被垂直带分布,与山体所处的纬度开始到极地为止的水平植被带分布顺序相对应。
     例如,黄山位于中亚热带地区,其山体植被垂直带的变化,与山体所处纬度开始自南向北植被的纬度地带性变化规律相对应。黄山植被垂直带谱如下:
 
(1)500~1100米 常绿阔叶林 (6)﹤800米 马尾松林
(2)900~1250米 常绿落叶阔叶混交林 (7)﹥800米 台湾松林
(3)1200~1500米 落叶阔叶林
(4)1400~1750米 山地矮林和山地灌丛
(5)1600~1840米 山地草甸
 
2.体现经度地带性的山体垂直带的组成情况,还与该经度地带所处的纬度有一定的相关性。经度起点的植被垂直带,向上首先变为同纬度的海洋性植被(即近海洋处同高度的植被类型),而后,随着海拔的升高,出现与纬度地带性相应的植被带。
    如高山是处于热带的荒漠地区,则山麓平地的地带性的植被类型为干荒漠,随着山地的上升,依次的理想分布为干草原(或稀树草原)→疏林灌丛→常绿阔叶林→夏绿林→亚高山针叶林→高山灌丛→高山草地→高山冻原→冰雪带。
    如天山北坡山地的植被垂直分布大致如下:
(1)500~1000米 荒漠带
(2)1000~1700米 山地荒漠草原和山地草原带
(3)1700~2700米 山地针叶林带
(4)2700~3000米 亚高山草甸带
(5)3000~3800米 高山草甸、高山垫状植被和终年冰雪带。

相关话题/

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19