2017考研:必知的数学解题惯性思维

本站小编 免费考研网/2017-01-01

闂傚倸鍊烽懗鍓佸垝椤栫偛绀夋俊銈呮噹缁犵娀鏌熼幑鎰靛殭闁告俺顫夐妵鍕棘閸喒鎸冮梺鍛婎殕瀹€鎼佸箖濡ゅ懏鏅查幖瀛樼箘閻╁海绱撴担椋庤窗闁革綇缍佸濠氭偄閻撳海顦ч梺鍏肩ゴ閺呮繈鎮¢崒鐐粹拺缂佸娉曢悞鍧楁煙閸戙倖瀚�2濠电姷鏁搁崑鐐哄垂閸洖绠扮紒瀣紩濞差亜惟闁冲搫顑囩粙蹇涙⒑閸︻厼鍔嬫い銊ユ瀹曠敻鍩€椤掑嫭鈷戦柛娑橈工婵箑霉濠婂懎浠辩€规洘妞介弫鎾绘偐瀹曞洤骞楅梻渚€娼х换鍫ュ磹閺嵮€妲堢憸鏃堝蓟閿濆鐒洪柛鎰典簼閸d即姊虹拠鈥虫殭闁搞儜鍥ф暪闂備焦瀵х换鍌毭洪姀銈呯;闁圭儤顨嗛埛鎴︽煕濠靛棗顏╅柍褜鍓欑紞濠囧箖闁垮缍囬柍鍝勫亞濞肩喖姊虹捄銊ユ珢闁瑰嚖鎷�
濠电姷鏁告慨浼村垂瑜版帗鍋夐柕蹇嬪€曢悙濠勬喐瀹ュ棙鍙忛柕鍫濐槹閳锋垿鏌涘☉姗堝伐缂佹甯楁穱濠囶敃閿濆洦鍒涘銈冨灪濡啯鎱ㄩ埀顒勬煏閸繃锛嶆俊顐㈠閺岋絾鎯旈婊呅i梺鍝ュУ閻楃姴鐣烽姀銈呯妞ゆ梻鏅崢鎼佹⒑閸涘﹥绀嬫繛浣冲洦鍊堕柨婵嗘娴滄粓鏌熺€涙ḿ绠栧璺哄缁辨帞鈧綆浜跺Ο鈧梺绯曟杹閸嬫挸顪冮妶鍡楀潑闁稿鎹囬弻宥囨嫚閺屻儱寮板┑锟犵畺娴滃爼寮诲鍫闂佸憡鎸婚悷鈺佺暦椤栨稑顕遍悗娑櫭禍顖氣攽閻愬弶鈻曞ù婊勭箞瀵煡顢楅崟顒€鈧爼鏌i幇顔芥毄闁硅棄鍊块弻娑㈠Χ閸ヮ灝銏ゆ婢跺绡€濠电姴鍊搁弳锝嗐亜鎼淬埄娈曢柕鍥у閸╃偤顢橀悙宸痪婵犳鍨遍幐鎶藉蓟閿熺姴鐐婇柍杞扮劍閻忎線姊洪崨濠勬喛闁稿鎹囧缁樻媴閸濄儳楔濠电偘鍖犻崱鎰睏闂佺粯鍔楅弫鍝ョ不閺冨牊鐓欓柟顖嗗苯娈堕梺宕囩帛濮婂綊骞堥妸銉庣喓鎷犻幓鎺濇浇闂備焦鎮堕崐褏绮婚幘璇茶摕闁绘棁娅i惌娆撴煙缁嬪灝顒㈤柟顔界懇濮婄儤瀵煎▎鎴犘滅紓浣哄У閻楁洟顢氶敐澶樻晝闁冲灈鏅滈悗濠氭⒑瑜版帒浜伴柛妯哄⒔缁瑩宕熼娑掓嫼闂佸湱枪濞寸兘鍩ユ径鎰厸闁割偒鍋勬晶瀵糕偓瑙勬礀缂嶅﹥淇婂宀婃Ъ婵犳鍨伴妶鎼佸蓟濞戞ǚ妲堟慨妤€鐗婇弫鍓х磽娴e搫校閻㈩垳鍋ら崺鈧い鎺嗗亾闁诲繑鑹鹃…鍨潨閳ь剟骞冭瀹曞崬霉閺夋寧鍠樼€规洜枪铻栧ù锝夋櫜閻ヮ亪姊绘担渚敯闁规椿浜浠嬪礋椤栨稒娅栭梺鍝勭▉閸樹粙鎮¤箛娑欑厱闁斥晛鍟粈鈧銈忕岛閺嗘竼e濠电姷鏁告慨浼村垂閸︻厾绀婂┑鐘叉搐閻掑灚銇勯幒宥堝厡闁愁垱娲熼弻鏇㈠幢濡も偓閺嗭綁鏌$仦鍓ф创妤犵偞甯¢獮瀣倻閸℃﹩妫у┑锛勫亼閸婃牜鏁悙鍝勭獥闁归偊鍠氶惌娆忊攽閻樺弶澶勯柛瀣姍閺岋綁濮€閵忊剝姣勯柡浣哥墦濮婄粯鎷呯粙鎸庡€┑鐘灪閿曘垹鐣烽娑橆嚤閻庢稒锚娴滎垶姊洪崨濠勭畵濠殿垵椴搁幆鏃堝閿涘嫮肖婵$偑鍊栭崝妤呭窗鎼淬垻顩插Δ锝呭暞閻撴盯鏌涢妷锝呭闁汇劍鍨块弻锝夋偄閸欏鐝旈梺瀹犳椤︾敻鐛Ο鑲╃闁绘ê宕銏′繆閻愵亜鈧牕煤濠靛棌鏋嶉柡鍥╁亶缂傛岸鐓崶銊р槈鐎瑰憡绻冮妵鍕箻濡も偓閸燁垶顢欓敓锟�20婵犲痉鏉库偓妤佹叏閻戣棄纾婚柣妯款嚙缁犲灚銇勮箛鎾搭棡妞ゎ偅娲樼换婵嬫濞戝崬鍓扮紓浣哄У閸ㄥ潡寮婚妶鍡樺弿闁归偊鍏橀崑鎾澄旈埀顒勫煝閺冨牆顫呴柣妯烘閹虫捇銈导鏉戠闁冲搫锕ラ敍鍛磽閸屾瑧顦︽い锔诲灦椤㈡岸顢橀姀鐘靛姦濡炪倖宸婚崑鎾寸節閳ь剟鏌嗗鍛紱闂佺粯姊婚崢褔寮告笟鈧弻鏇㈠醇濠垫劖效闂佺ǹ楠哥粔褰掑蓟濞戙垹鍗抽柕濞垮劚椤晠姊烘导娆戠暠缂傚秴锕獮鍐ㄎ旈崘鈺佹瀭闂佸憡娲﹂崣搴ㄥ汲閿熺姵鈷戦柛婵嗗椤ユ垿鏌涚€n偅宕屾慨濠冩そ瀹曨偊宕熼崹顐嵮囨⒑閸涘﹥鈷愰柣妤冨█楠炲啴鏁撻悩铏珫闂佸憡娲﹂崜娆撴偟娴煎瓨鈷戦梻鍫熺〒缁犳岸鏌涢幘瀵哥疄闁诡喒鈧枼鏋庨柟閭﹀枤椤旀洘绻濋姀锝嗙【妞ゆ垵妫涚划鍫ュ焵椤掑嫭鍊垫繛鍫濈仢濞呭秹鏌¢埀顒勫础閻戝棗娈梺鍛婃处閸嬫帡宕ョ€n喗鐓曢柡鍥ュ妼楠炴ɑ淇婇崣澶婄伌婵﹥妞藉畷顐﹀礋椤愮喎浜惧ù鐘差儜缂嶆牕顭跨捄鐑樻拱闁稿繑绮撻弻娑㈩敃閿濆棛顦ㄩ梺鍝勬媼閸撶喖骞冨鈧幃娆撴濞戞顥氱紓鍌欒兌婵數鏁垾鎰佹綎濠电姵鑹鹃悙濠囨煥濠靛棙鍣稿瑙勬礋濮婃椽鎳¢妶鍛€惧┑鐐插级閸ㄥ潡骞婂Δ鍐╁磯閻炴稈鍓濋悘渚€姊虹涵鍛涧闂傚嫬瀚板畷鏇㈠箣閿旇棄鈧敻鏌ㄥ┑鍡涱€楁鐐瘁缚缁辨帡鎮╁畷鍥р拰闂佸搫澶囬崜婵嗩嚗閸曨偀妲堟繛鍡楁禋娴硷拷
小编建议2017考研的同学,在复习备考的初期阶段逐渐找到适合自己的正确高效的解题方法,这样便于考生快速提高复习效率,下面就是小编整理的相关内容,供考生参考。

高等数学:

1.在题设条件中给出一个函数f(x)二阶和二阶以上可导,“不管三七二十一”,把f(x)在指定点展成泰勒公式再说。

2.在题设条件或欲证结论中有定积分表达式时,则“不管三七二十一”先用积分中值定理对该积分式处理一下再说。

3.在题设条件中函数f(x)在[a,b]上连续,在(a,b)内可导,且f(a)=0或f(b)=0或f(a)=f(b)=0,则“不管三七二十一”先用拉格朗日中值定理处理一下再说。

4.对定限或变限积分,若被积函数或其主要部分为复合函数,则“不管三七二十一”先做变量替换使之成为简单形式f(u)再说。

概率论与数理统计:

1.如果要求的是若干事件中“至少”有一个发生的概率,则马上联想到概率加法公式;当事件组相互独立时,用对立事件的概率公式。

2.若给出的试验可分解成(0-1)的n重独立重复试验,则马上联想到Bernoulli试验,及其概率计算公式。

3.若某事件是伴随着一个完备事件组的发生而发生,则马上联想到该事件的发生概率是用全概率公式计算。关键:寻找完备事件组。

4.若题设中给出随机变量X~N则马上联想到标准化X~N(0,1)来处理有关问题。

5.求二维随机变量(X,Y)的边缘分布密度的问题,应该马上联想到先画出使联合分布密度的区域,然后定出X的变化区间,再在该区间内画一条//y轴的直线,先与区域边界相交的为y的下限,后者为上限,而Y的求法类似。

6.欲求二维随机变量(X,Y)满足条件Y≥g(X)或(Y≤g(X))的概率,应该马上联想到二重积分的计算,其积分域D是由联合密度的平面区域及满足Y≥g(X)或(Y≤g(X))的区域的公共部分。

7.涉及n次试验某事件发生的次数X的数字特征的问题,马上要联想到对X作(0-1)分解。

8.凡求解各概率分布已知的若干个独立随机变量组成的系统满足某种关系的概率(或已知概率求随机变量个数)的问题,马上联想到用中心极限定理处理。

9.若为总体X的一组简单随机样本,则凡是涉及到统计量的分布问题,一般联想到用分布,t分布和F分布的定义进行讨论。

线性代数:

1.题设条件与代数余子式Aij或A*有关,则立即联想到用行列式按行(列)展开定理以及AA*=A*A=|A|E。

2.若涉及到A、B是否可交换,即AB=BA,则立即联想到用逆矩阵的定义去分析。

3.若题设n阶方阵A满足f(A)=0,要证aA+bE可逆,则先分解出因子aA+bE再说。

4.若要证明一组向量a1,a2,…,as线性无关,先考虑用定义再说。

5.若已知AB=0,则将B的每列作为Ax=0的解来处理再说。

6.若由题设条件要求确定参数的取值,联想到是否有某行列式为零再说。

7.若已知A的特征向量ζ0,则先用定义Aζ0=λ0ζ0处理一下再说。

8.若要证明抽象n阶实对称矩阵A为正定矩阵,则用定义处理一下再说。

相关话题/概率 计算 系统 统计 线性代数