2014年考研考前高等数学知识点终极梳理

跨考教育 /2014-01-16

考研到了最后一个月,这个时候考生在复习数学时,千万不要再大量做题了,应该回归教材,理清基本的知识点,梳理整个学科的知识框架。保持良好的心态,以最好的状态走上考场。跨考教育数学教研室李擂老师根据多年的教学经验,总结了考研数学高等数学的知识体系,希望能对广大能有所帮助。

  从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。

  极限部分:

  极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。

  会计算极限之后,我们来说说直接通过极限定义的基本概念:

  通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算极限。然后是间断点的分类,具体标准如下:

  从中我们也可以看出,讨论函数间断点的分类,也仅需要计算左右极限。

  再往后就是导数的定义了,函数在处可导的定义是极限存在,也可以写成极限存在。这里的极限式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与 无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。

  以上就是极限这个体系下主要的知识点。

  导数部分:

  导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。

  然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:①求单调区间或证明单调性;②证明不等式;③讨论方程根的个数。同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。

  积分部分:

  一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的极限;理解微元法(分割、近似、求和、取极限)。至于可积性的严格定义,考生没有必要掌握。然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求极限的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。

  会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。

  这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的极限,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。另外还有两章:级数、微分方程。它们可以看做是对前面知识点综合的应用。比如微分方程,它实际上就是积分学的推广,解微分方程就是求积分。而级数则是对极限,导数和积分各种知识的综合应用。

  文章来源:跨考教育

闂備胶鎳撻悺銊╁礉閹烘梹瀚婚柣鏃傚劋鐎氭岸鏌涘▎宥呭姎闁轰讲鏅犻幃璺衡槈鏉堚晛甯ㄧ紓浣介哺缁诲牆鐣峰璺哄耿闁哄洢鍨婚崣鎰版煟閻樺弶鎼愬褌绮欓崺銏ゆ嚃閳哄倸鐨梺鍛婃处閸撴岸鎮橀幇鐗堚拺闁告挆鍐у闁汇埄鍨伴顓熺閸涘﹥缍囨い鎰╁灩楠炲姊洪崗鐓庡姢闁搞垼灏妵鎰版晸閿燂拷40%闂備礁婀辩划顖炲礉閺嶎厼鍨傛慨妯块哺鐏忓孩鎱ㄥΟ鍨厫閻忓浚浜弻銊モ槈閾忣偄顏�
闂備浇顫夋禍浠嬪礉瀹€鈧划璇差吋閸ャ劌鐨┑顔角归崺鏍焊椤忓牊鐓涘璺猴工閺嗙喐绻涙径妯哄籍濠碘剝鎸冲畷鎺戔攽閹邦剚顔曞┑鐐差嚟婵绱為埀顒勬煏閸℃鏆g€规洩缍侀、娑㈡倷閳轰椒澹曞┑顔矫壕顓犵不閺嶎灐鐟扳堪閸曨偆顑勬繛瀵稿Т閻楀繒妲愰弮鍫濈闁绘ê鐏氶幆锝夋⒒娓氬洤浜濋柡灞诲妿濞嗐垽鎮欑€电硶鏋栭梺缁樺灦钃遍柟鐤含缁辨帡寮埀顒勬偡閿旂偓鏆滅憸鐗堝笧瀹撲線鏌涢…鎴濇珮闁告艾鎳庨湁闁兼祴鏅涜ⅴ闂侀€炲苯澧梺鑺ュ⒊P濠电偞娼欓崥瀣嚌妤e啫绠熼柟鎯版閻忚櫕绻濋崹顐e暗缂佲偓婢舵劖鐓熼柍褜鍓欐俊浠嬫煕閳哄倻娲撮柡灞芥噹椤繂鐣烽崶鈺冩毇闂佽崵濮村ú銈堛亹閻愬搫鑸规い鎺戝€归崑姗€鏌曟繛褍瀚弳鐘绘⒑閸涘﹤绗掓俊顐f濡懘鍩¢崨顔惧弰闂佺粯鍔﹂崜娆愬緞瀹ュ鐓欓悗娑欋缚婢ь剟鏌熼惂鍝ョМ妤犵偛閰f俊鐑藉Ω閵夛妇浜峰┑鐐村灦濮婄懓顭垮鈧獮鍐ㄎ旈崨顔芥珫閻庡厜鍋撻柛鎰劤濞堢偓绻涚€电ǹ顎撶紓宥佸亾闂侀潧妫楅崯鎾箠閵忕姷鏆嬮柡澶庢硶閹拷40%闂備礁婀辩划顖炲礉閺嶎厼鍨傛慨妯挎硾杩濋梺绋挎湰缁诲秹宕甸敃鈧湁闁绘瑥鎳愮粔顒勬煏閸℃鏆熼柟宄扮秺椤㈡ê鈹戦崶褜浼嗛梻浣告惈閻楁粓宕滃☉銏″仧妞ゆ牗绋撻々鐑芥偣娴e摜锛嶇紒澶婄仢闇夋繝褏濮撮崯顖炲箚閸岀偞鐓ユ繛鎴炃圭€氱増绻涢悡搴☆劉缂佸倸绉归、鏇㈠閻樼數袣9闂備胶顢婇崺鏍綘闂侀€炲苯澧柛濠冩倐閹啴濮€閵堝懐顦梺绯曞墲濞茬喖鎮¢埡鍛拺闁告挆鍐у闁汇埄鍨遍幐铏繆鐎涙ɑ濯撮悷娆忓闂傤垶姊虹涵鍛牚闁稿骸宕湁婵せ鍋撻柟顔ㄥ洤鐐婇柍鍝勫暞閹綁姊洪幐搴b槈闁兼椿鍨甸妵鎰板磼閻愯尙顦梺鍝勵槹椤戞瑩宕濋崨瀛樼厸鐎规挻鍝庨崐銈夊疮閸儲鐓曠憸搴g矙韫囨稑鐒垫い鎴e劵閸忓本绻涢崨顐㈠闁诡垱妫冮弫鍐╂媴缁嬭法浠梻浣告啞閻ㄦ粍鎷呴幓鎺嶅婵炶揪缍侀弲鑼姳閹惰姤鐓曟俊銈勭閹兼悂鏌嶈閸忔稓绮堟担鍦洸闁哄洨鍠撻埞宥夊箳閹惰棄鐒垫い鎴濈仢閸婃構缂傚倷绀侀張顒€顪冮挊澹╂盯宕稿Δ鈧繚婵炶揪缍€濞咃綁宕i埀顒佺箾閹寸偞鐓ョ紒銊︽そ閸┾偓妞ゆ垶瀵х粊浼存煟椤忓懏灏﹂柟顔芥そ閺佹劙宕堕埡鍌涘劘闂備礁鎲¢懝鍓р偓姘煎墴婵$敻宕堕鍌氱ウ闂佸憡鍔栬ぐ鍐煀闁秵鐓忛柛鈽嗗幗鐎氾拷

相关话题/高等数学