生物化学考研笔记(5)
本站小编 免费考研网/2019-04-03
(3)与重金属反应
极微量的某些重金属离子,如Ag+、Hg2+,就能与巯基反应,生成硫醇盐,导致含巯基的酶失活。
5. 以下反应常用于氨基酸的检验:
l 酪氨酸、组氨酸能与重氮化合物反应(Pauly反应),可用于定性、定量测定。组氨酸生成棕红色的化合物,酪氨酸为桔黄色。
l 精氨酸在氢氧化钠中与1-萘酚和次溴酸钠反应,生成深红色,称为坂口反应。用于胍基的鉴定。
l 酪氨酸与硝酸、亚硝酸、硝酸汞和亚硝酸汞反应,生成白色沉淀,加热后变红,称为米伦反应,是鉴定酚基的特性反应。
l 色氨酸中加入乙醛酸后再缓慢加入浓硫酸,在界面会出现紫色环,用于鉴定吲哚基。
在蛋白质中,有些侧链基团被包裹在蛋白质内部,因而反应很慢甚至不反应。
三、色谱与氨基酸的分析分离
1. 色谱(chromatography)的发展史
最早的层析实验是俄国植物学家Цвет在1903年用碳酸钙分离叶绿素,属于吸附层析。40年代出现了分配层析,50年代出现了气相色谱,60年代出现HPLC,80年代出现了超临界层析,90年代出现的超微量HPLC可分离ng级的样品。
2. 色谱的分类:
按流动相可分为气相、液相、超临界色谱等;
按介质可分为纸层析、薄层层析、柱层析等;
按分离机制可分为吸附层析、分配层析、分子筛层析等
3. 色谱的应用
可用于分离、制备、纯度鉴定等。
定性可通过保留值、内标、标准曲线等方法,定量一般用标准曲线法。
氨基酸的分析分离是测定蛋白质结构的基础。在分配层析和离子交换层析法开始应用于氨基酸成分分析之后,蛋白质结构的研究才取得了显著的成就。现在这些方法已自动化。
氨基酸从强酸型离子交换柱的洗脱顺序如下:
Asp,Thr,Ser,Glu,Pro,Gly,Ala,Cys,Val,Met,Ile,Leu,Tyr,Phe,Lys,His,(NH3),Arg
第三节 蛋白质的一级结构
蛋白质是生物大分子,具有明显的结构层次性,由低层到高层可分为一级结构、二级结构、三级结构和四级结构。
一、肽键和肽
一个氨基酸的羧基与另一个氨基酸的氨基缩水形成的共价键,称为肽键。在蛋白质分子中,氨基酸借肽键连接起来,形成肽链。
最简单的肽由两个氨基酸组成,称为二肽。含有三、四、五个氨基酸的肽分别称为三肽、四肽、五肽等。肽链中的氨基酸由于形成肽键时脱水,已不是完整的氨基酸,所以称为残基。肽的命名是根据组成肽的氨基酸残基来确定的。一般从肽的氨基端开始,称为某氨基酰某氨基酰…某氨基酸。肽的书写也是从氨基端开始。
肽键象酰胺键一样,由于键内原子处于共振状态而表现出较高的稳定性。在肽键中C-N单键具有约40%双键性质,而C=O双键具有40%单键性质。这样就产生两个重要结果:(1)肽键的亚氨基在pH 0-14的范围内没有明显的解离和质子化的倾向;(2)肽键中的C-N单键不能自由旋转,使蛋白质能折叠成各种三维构象。
除了蛋白质部分水解可以产生各种简单的多肽以外,自然界中还有长短不等的小肽,它们具有特殊的生理功能。
动植物细胞中含有一种三肽,称为谷胱甘肽,即δ-谷氨酰半胱氨酰甘氨酸。因其含有巯基,故常以GSH来表示。它在体内的氧化还原过程中起重要作用。脑啡肽是天然止痛剂。肌肉中的鹅肌肽是一个二肽,即β-丙氨酰组氨酸。肌肽可作为肌肉中的缓冲剂,缓冲肌肉产生的乳酸对pH的影响。一种抗菌素叫做短杆菌酪肽,由12种氨基酸组成,其中有几种是D-氨基酸。这些天然肽中的非蛋白质氨基酸可以使其免遭蛋白酶水解。许多激素也是多肽,如催产素、加压素、舒缓激肽等。
二、肽的理化性质
小肽的理化性质与氨基酸类似。许多小肽已经结晶。晶体的熔点很高,说明是离子晶体,在水溶液中以偶极离子存在。肽键的亚氨基不解离,所以肽的酸碱性取决于肽的末端氨基、羧基和侧链上的基团。在长肽或蛋白质中,可解离的基团主要是侧链上的。肽中末端羧基的pK’比自由氨基酸的稍大,而末端氨基的pK’则稍小。侧链基团变化不大。
肽的滴定曲线和氨基酸的很相似。肽的等电点也可以根据它的pK’值确定。
一般小肽的旋光度等于各个氨基酸旋光度的总和,但较大的肽或蛋白质的旋光度不等于其组成氨基酸的旋光度的简单加和。
肽的化学性质和氨基酸一样,但有一些特殊的反应,如双缩脲反应。一般含有两个或两个以上肽键的化合物都能与CuSO4碱性溶液发生双缩脲反应而生成紫红色或蓝紫色的复合物。利用这个反应可以测定蛋白质的含量。
三、一级结构的测定
(一)一级结构
蛋白质的一级结构是指肽链的氨基酸组成及其排列顺序。氨基酸序列是蛋白质分子结构的基础,它决定蛋白质的高级结构。一级结构可用氨基酸的三字母符号或单字母符号表示,从N-末端向C-末端书写。采用三字母符号时,氨基酸之间用连字符(-)隔开。
(二)测定步骤
测定蛋白质的一级结构,要求样品必须是均一的(纯度大于97%)而且是已知分子量的蛋白质。一般的测定步骤是:
1. 通过末端分析确定蛋白质分子由几条肽链构成。
2. 将每条肽链分开,并分离提纯。
3. 肽链的一部分样品进行完全水解,测定其氨基酸组成和比例。
4. 肽链的另一部分样品进行N末端和C末端的鉴定。
5. 拆开肽链内部的二硫键。
6. 肽链用酶促或化学的部分水解方法降解成一套大小不等的肽段,并将各个肽段分离出来。
7. 测定每个肽段的氨基酸顺序。
8. 从第二步得到的肽链样品再用另一种部分水解方法水解成另一套肽段,其断裂点与第五步不同。分离肽段并测序。比较两套肽段的氨基酸顺序,根据其重叠部分拼凑出整个肽链的氨基酸顺序。
9. 测定原来的多肽链中二硫键和酰胺基的位置。
(三)常用方法
1. 末端分析
(1)N末端
蛋白质的末端氨基与2,4-二硝基氟苯(DNFB)在弱碱性溶液中作用生成二硝基苯基蛋白质(DNP-蛋白质)。产物黄色,可经受酸性100℃高温。水解时,肽链断开,但DNP基并不脱落。DNP-氨基酸能溶于有机溶剂(如乙醚)中,这样可与其他氨基酸和ε-DNP赖氨酸分开。再经双向滤纸层析或柱层析,可以鉴定黄色的DNP氨基酸。
丹磺酰氯法是更灵敏的方法。蛋白质的末端氨基与5-(二甲胺基)萘-1-磺酰氯(DNS-Cl)反应,生成DNS-蛋白质。DNS-氨基酸有强荧光,激发波长在360nm左右,比DNFB法灵敏100倍。
目前应用最广泛的是异硫氰酸苯酯(PITC)法。末端氨基与PITC在弱碱性条件下形成相应的苯氨基硫甲酰衍生物,后者在硝基甲烷中与酸作用发生环化,生成相应的苯乙内酰硫脲衍生物而从肽链上掉下来。产物可用气-液色谱法进行鉴定。这个方法最大的优点是剩下的肽链仍是完整的,可依照此法重复测定新生的N末端氨基酸。现在已经有全自动的氨基酸顺序分析仪,可测定含20个以上氨基酸的肽段的氨基酸顺序。缺点是不如丹磺酰氯灵敏,可与之结合使用。
N末端氨基酸也可用酶学方法即氨肽酶法测定。
(2)C末端
a) C末端氨基酸可用硼氢化锂还原生成相应的α氨基醇。肽链水解后,再用层析法鉴定。有断裂干扰。
b) 另一个方法是肼解法。多肽与肼在无水条件下加热,可以断裂所有的肽键,除C末端氨基酸外,其他氨基酸都转变为相应的酰肼化合物。肼解下来的C末端氨基酸可用纸层析鉴定。精氨酸会变成鸟氨酸,半胱氨酸、天冬酰胺和谷氨酰胺被破坏。
c) 也可用羧肽酶法鉴定。将蛋白质在pH 8.0, 30℃与羧肽酶一起保温,按一定时间间隔取样,用纸层析测定释放出来的氨基酸,根据氨基酸的量与时间的关系,就可以知道C末端氨基酸的排列顺序。羧肽酶A水解除精氨酸、赖氨酸和脯氨酸外所有肽键,羧肽酶B水解精氨酸和赖氨酸。
2.二硫键的拆开和肽链的分离
一般情况下,蛋白质分子中肽链的数目应等于N末端氨基酸残基的数目,可根据末端分析来确定一种蛋白质由几条肽链构成。必须设法把这些肽链分离开来,然后测定每条肽链的氨基酸顺序。如果这些肽链之间不是共价交联的,可用酸、碱、高浓度的盐或其他变性剂处理蛋白质,把肽链分开。如果肽链之间以二硫键交联,或肽链中含有链内二硫键,则必须用氧化或还原的方法将二硫键拆开。最普遍的方法是用过量的巯基乙醇处理,然后用碘乙酸保护生成的半胱氨酸的巯基,防止重新氧化。二硫键拆开后形成的个别肽链,可用纸层析、离子交换柱层析、电泳等方法进行分离。
3.肽链的完全水解和氨基酸组成的测定。
在测定氨基酸顺序之前,需要知道多肽链的氨基酸组成和比例。一般用酸水解,得到氨基酸混合物,再分离测定氨基酸。目前用氨基酸自动分析仪,2-4小时即可完成。
蛋白质的氨基酸组成,一般用每分子蛋白质中所含的氨基酸分子数表示。不同种类的蛋白质,其氨基酸组成相差很大。
4.肽链的部分水解和肽段的分离
当肽链的氨基酸组成及N末端和C末端已知后,随后的步骤是肽链的部分水解。这是测序工作的关键步骤。这一步通常用专一性很强的蛋白酶来完成。
最常用的是胰蛋白酶(trypsin),它专门水解赖氨酸和精氨酸的羧基形成的肽键,所以生成的肽段之一的C末端是赖氨酸或精氨酸。用丫丙啶处理,可增加酶切位点(半胱氨酸);用马来酸酐(顺丁烯二酸酐)保护赖氨酸的侧链氨基,或用1,2-环己二酮修饰精氨酸的胍基,可减少酶切位点。
经常使用的还有糜蛋白酶,水解苯丙氨酸、酪氨酸、色氨酸等疏水残基的羧基形成的肽键。其他疏水残基反应较慢。
用溴化氰处理,可断裂甲硫氨酸的羧基形成的肽键。水解后甲硫氨酸残基转变为C末端高丝氨酸残基。以上三种方法经常使用。
胃蛋白酶和嗜热菌蛋白酶。前者水解疏水残基之间的肽键,后者水解疏水残基的氨基形成的肽键。
金葡菌蛋白酶,又称谷氨酸蛋白酶或V8蛋白酶,水解谷氨酸和天冬氨酸的羧基形成的肽键,但受缓冲液影响。在醋酸缓冲液中只水解谷氨酸,在磷酸缓冲液中还可水解天冬氨酸。
梭状芽孢杆菌蛋白酶,水解精氨酸羧基形成的肽键,又称精氨酸蛋白酶。耐变性剂,可经受6M尿素2小时。可用于水解不易溶解的蛋白。
凝血酶,水解Arg-Gly肽键。
羟胺可水解Asn-Gly,但Asn-Leu和 Asn-Ala也能部分裂解。
以上方法中,酶不能水解脯氨酸参与形成的肽键。
多肽部分水解后,降解成长短不一的小肽段,可用层析或电泳加以分离提纯。经常用双向层析或电泳分离,再用茚三酮显色,所得的图谱称为肽指纹谱。
5.多肽链中氨基酸顺序的测定
从多肽链中部分水解得到的肽段可用化学法或酶法测序,然后比较用不同方法获得的两套肽段的氨基酸顺序,根据它们彼此重叠的部分,确定每个肽段的适当位置,拼凑出整个多肽链的氨基酸顺序。
6.二硫键位置的确定
一般用蛋白酶水解带有二硫键的蛋白质,从部分水解产物中分离出含二硫键的肽段,再拆开二硫键,将两个肽段分别测序,再与整个多肽链比较,即可确定二硫键的位置。常用胃蛋白酶,因其专一性低,生成的肽段小,容易分离和鉴定,而且可在酸性条件下作用(pH2),此时二硫键稳定。肽段的分离可用对角线电泳,将混合物点到滤纸的中央,在pH6.5进行第一次电泳,然后用过甲酸蒸汽断裂二硫键,使含二硫键的肽段变成一对含半胱氨磺酸的肽段。将滤纸旋转90度后在相同条件下进行第二次电泳,多数肽段迁移率不变,处于对角线上,而含半胱氨磺酸的肽段因负电荷增加而偏离对角线。用茚三酮显色,分离,测序,与多肽链比较,即可确定二硫键位置。
四、多肽合成
多肽的人工合成有两种类型,一种是由不同氨基酸按照一定顺序排列的控制合成,另一种是由一种或两种氨基酸聚合或共聚合。控制合成的一个困难是进行接肽反应所需的试剂,能同时和其他官能团反应。因此在接肽以前必须首先将这些基团加以封闭或保护,肽键形成后再除去保护基。这样每连接一个氨基酸残基都要经过几个步骤,要得到较长的肽链就必须每步都有较高的产率。如果每一步反应产率都是90%,那么30次反应后总产率只有4.24%。
保护基必须在接肽时起保护作用,在接肽后容易除去,又不引起肽键断裂。最常用的氨基保护基Y是苄氧甲酰基,可用催化加氢或用金属钠在液氨中处理除去。其他还有三苯甲基、叔丁氧甲酰基等,可用稀盐酸或乙酸在室温下除去。
羧基保护基Z通常用烷基,如乙基,可在室温下皂化除去。如用苄基,可用催化加氢除去。
肽键不能自发形成,常用缩合剂促进肽键形成。接肽用的缩合剂最有效的是N,N’-二环己基碳二亚胺(DC CI)。DCCI从两个氨基酸分子中夺取一分子水,自身变为不溶的N,N’-二环己基脲,从反应液中沉淀出来,可过滤除去。接肽反应除用缩合剂以外,还可用分别活化参加形成肽键的羧基和氨基的方法。羧基活化可用叠氮化物法和活化酯法(对硝基苯酯)等;氨基活化一般不需特殊手段,通常在接肽时加入有机碱,如三乙胺,保证氨基在自由状态即可。
近年来固相多肽合成迅速发展。在固相合成中,肽链的逐步延长是在不溶的聚苯乙烯树脂小圆珠上进行的。合成多肽的羧基端先和氯甲基聚苯乙烯树脂反应,形成苄酯。第二个氨基酸的氨基用叔丁氧甲酰基保护后,以DCCI为缩合剂,接在第一个氨基酸的氨基上。重复这个方法,可使肽链按一定顺序延长。最后把树脂悬浮在无水三氟乙酸中,通入干燥HBr,使多肽与树脂分离,同时除去保护基。整个合成过程现在已经可以在自动化固相多肽合成仪上进行。平均合成每个肽键只需三小时。此法可用于医药工业。人工合成的催产素没有混杂的加压素,比提取的天然药品好。已经成功合成含124个残基的蛋白。
第四节 蛋白质的高级结构
蛋白质的多肽链并不是线形伸展的,而是按一定方式折叠盘绕成特有的空间结构。蛋白质的三维构象,也称空间结构或高级结构,是指蛋白质分子中原子和基团在三维空间上的排列、分布及肽链的走向。高级结构是蛋白质表现其生物功能或活性所必须的,包括二级、三级和四级结构。Primary structure, secondary, tertiary, quaternary structure
一、有关概念
1. 构型configration与构象conformation
构型指立体异构体中取代原子或基团在空间的取向,构型的改变必须通过共价键的断裂。构象是指这些取代基团当单键旋转时可能形成的不同的立体结构,构象的改变不涉及共价键的改变。
2. 二面角
因为肽键不能自由旋转,所以肽键的四个原子和与之相连的两个α碳原子共处一个平面,称肽平面。肽平面内的C=O与N-H呈反式排列,各原子间的键长和键角都是固定的。肽链可看作由一系列刚性的肽平面通过α碳原子连接起来的长链,主链的构象就是由肽平面之间的角度决定的。主链上只有α碳原子连接的两个键是单键,可自由旋转。绕Cα-N1旋转的角称Φ,而绕Cα-C2旋转的角称Ψ。这两个角称为二面角。规定当旋转键两侧的肽链成顺式时为0度。取值范围是正负180度,当二面角都是180度时肽链完全伸展。由于空间位阻,实际的取值范围是很有限的。
二、二级结构
(一)二级结构是肽链的空间走向
蛋白质的二级结构是指肽链主链的空间走向(折叠和盘绕方式),是有规则重复的构象。肽链主链具有重复结构,其中氨基是氢键供体,羰基是氢键受体。通过形成链内或链间氢键可以使肽链卷曲折叠形成各种二级结构单元。复杂的蛋白质分子结构,就由这些比较简单的二级结构单元进一步组合而成。
(二)肽链卷曲折叠形成四种二级结构单元
1.α螺旋(α-helix) α螺旋模型是Pauling和Corey等研究α-角蛋白时于1951年提出的。角蛋白是动物的不溶性纤维状蛋白,是由动物的表皮衍生而来的。它包括皮肤的表皮以及毛发、鳞、羽、甲、蹄、角、丝等。角蛋白可分为两类,一类是α角蛋白,胱氨酸含量丰富,如角、甲、蹄的蛋白胱氨酸含量高达22%;另一类是β角蛋白,不含胱氨酸,但甘氨酸、丙氨酸和丝氨酸的含量很高,蚕丝丝心蛋白就属于这一类。α角蛋白,如头发,暴露于湿热环境中几乎可以伸长一倍,冷却干燥后又收缩到原来长度。β角蛋白则无此变化。
α角蛋白的X射线衍射图案极其相似,沿长轴方向都有一个大周期结构或重复单位,其长度为5-5.5埃。Pauling等考虑到肽平面对多肽链构象的限制作用,设计了多肽链折叠的各种可能模型,发现其中一种α螺旋模型能很好地说明α角蛋白的X射线衍射图案中的5-5.5埃重复单位。在这个模型中,每隔3.6个氨基酸残基螺旋上升一圈,相当于向上平移5.4埃。螺旋的直径是11埃。螺旋上升时,每个氨基酸残基沿轴旋转100°,向上平移1.5埃,比完全伸展的构象压缩2.4倍。这与衍射图案中的小周期完全一致。其二面角Φ=-57度,Ψ=-48度。在α螺旋中氨基酸残基的侧链伸向外侧,相邻的螺圈之间形成链内氢键,氢键的取向几乎与中心轴平行。氢键是由肽键中氮原子上的氢与其N端第四个羰基上的氧之间形成的。α螺旋的结构允许所有的肽键都参与链内氢键的形成,因此相当稳定。α-螺旋由氢键构成一个封闭环,其中包括三个残基,共13个原子,称为3.613(n=3)螺旋。
由L型氨基酸构成的多肽链可以卷曲成右手螺旋,也可卷曲成左手螺旋,但右手螺旋比较稳定。因为在左手螺旋中β碳与羰基过于接近,不稳定。在天然蛋白质中,几乎所有α螺旋都是右手螺旋。只在嗜热菌蛋白酶中发现一圈左手螺旋。在α角蛋白中,3或7个α螺旋可以互相拧在一起,形成三股或七股的螺旋索,彼此以二硫键交联在一起。α螺旋不仅是α角蛋白的主要构象,在其他纤维蛋白和球状蛋白中也广泛存在,是一种常见的二级结构。
α螺旋是一种不对称的分子结构,具有旋光能力。α螺旋的比旋不等于其中氨基酸比旋的简单加和,因为它的旋光性是各个氨基酸的不对称因素和构象本身不对称因素的总反映。天然α螺旋的不对称因素引起偏振面向右旋转。利用α螺旋的旋光性,可以测定它的相对含量。
一条肽链能否形成α螺旋,以及螺旋的稳定性怎样,与其一级结构有极大关系。脯氨酸由于其亚氨基少一个氢原子,无法形成氢键,而且Cα-N键不能旋转,所以是α螺旋的破坏者,肽链中出现脯氨酸就中断α螺旋,形成一个“结节”。此外,侧链带电荷及侧链基团过大的氨基酸不易形成α螺旋,甘氨酸由于侧链太小,构象不稳定,也是α螺旋的破坏者。
根据各种残基的特性,可以预测蛋白质的二级结构。目前常见的预测方法有Chou-Fasman法、GOR法、Lim法等,都是根据统计信息进行预测的。如果二级结构的预测成功率大于80%,就可以用来预测高级结构,但目前只能达到70%左右。Chou-Fasman法比较直观,与二级结构形成的实际过程接近,但成功率不高。
Chou-Fasman法根据各个氨基酸在一些已知结构的蛋白质中的表现,按构象参数Pα(表示形成α螺旋的能力) 由大到小将他们分为六组,依次为:
最强的形成者(Hα):Glu、Met、Ala、Leu
中等的形成者(hα):Lys、Phe、Gln、Trp、Ile、Val
很弱的形成者(Iα):Asp、His
中立者(iα):Cys、Ser、Thr、Arg
较弱的破坏者(bα):Asn、Tyr
最强的破坏者(Bα):Gly、Pro
如肽链中6个连续的残基中有4个hα即可形成核心,然后向两侧延伸,遇到四肽破坏者时中止。形成α螺旋时有协同性,即一旦形成核心,其它残基就容易加入。
2.β-折叠(β-pleated sheet) β-折叠也叫β-片层,在β-角蛋白如蚕丝丝心蛋白中含量丰富。其X射线衍射图案与α-角蛋白拉伸后的图案很相似。在此结构中,肽链较为伸展,若干条肽链或一条肽链的若干肽段平行排列,相邻主链骨架之间靠氢键维系。氢键与链的长轴接近垂直。为形成最多的氢键,避免相邻侧链间的空间障碍,锯齿状的主链骨架必须作一定的折叠(φ=-139°,ψ=+135°),以形成一个折叠的片层。侧链交替位于片层的上方和下方,与片层垂直。
β折叠有两种类型,一种是平行式,即所有肽链的氨基端在同一端;另一种是反平行式,即所有肽链的氨基端按正反方向交替排列。从能量上看,反平行式更为稳定。丝心蛋白和多聚甘氨酸是反平行,拉伸α角蛋白形成的β角蛋白是平行式。反平行式的重复距离是7.0埃(两个残基),平行式是6.5埃。
在丝心蛋白中,每隔一个氨基酸就是甘氨酸,所有在片层的一面都是氢原子;在另一面,侧链主要是甲基,因为除甘氨酸外,丙氨酸是主要成分。如果肽链中侧链过大,并带有同种电荷,则不能形成β折叠。拉伸后的α角蛋白之所以不稳定,容易复原,就是因为侧链体积大,电荷高。
3.β转角 β转角使肽链形成约180°的回转,第一个氨基酸的羰基与第四个氨基酸的氨基形成氢键。这种结构在球状蛋白中广泛存在,可占全部残基的1/4。多位于球状蛋白的表面,空间位阻较小处。又分为Ⅰ型、Ⅱ型与III型。
4.无规卷曲 指没有一定规律的松散肽链结构。此结构看来杂乱无章,但对一种特定蛋白又是确定的,而不是随意的。在球状蛋白中含有大量无规卷曲,倾向于产生球状构象。这种结构有高度的特异性,与生物活性密切相关,对外界的理化因子极为敏感。酶的活性中心往往位于无规卷曲中。
除以上常见二级结构单元外,还有其他新发现的结构,如Ω环,由10个残基组成,象希腊字母Ω。
5.超二级结构
相邻的二级结构单元可组合在一起,相互作用,形成有规则,在空间上能辨认的二级结构组合体,充当三级结构的构件,称为超二级结构。常见的有三种:
αα:由两股或三股右手α螺旋彼此缠绕形成的左手超螺旋,重复距离约为140埃。由于超螺旋,与独立的α螺旋略有偏差。
βαβ:β折叠之间由α螺旋或无规卷曲连接。
βββ:由一级结构上连续的反平行β折叠通过紧凑的β转角连接而成。包括β曲折和回形拓扑。
三、蛋白质的三级结构
三级结构是指多肽链中所有原子和基团的构象。它是在二级结构的基础上进一步盘曲折叠形成的,包括所有主链和侧链的结构。哺乳动物肌肉中的肌红蛋白整个分子由一条肽链盘绕成一个中空的球状结构,全链共有8段α螺旋,各段之间以无规卷曲相连。在α螺旋肽段间的空穴中有一个血红素基团。所有具有高度生物学活性的蛋白质几乎都是球状蛋白。三级结构是蛋白质发挥生物活性所必须的。
在三级结构中,多肽链的盘曲折叠是由分子中各氨基酸残基的侧链相互作用来维持的。二硫键是维持三级结构唯一的一种共价键,能把肽链的不同区段牢固地连接在一起,而疏水性较强的氨基酸则借疏水力和范德华力聚集成紧密的疏水核,有极性的残基以氢键和盐键相结合。在水溶性蛋白中,极性基团分布在外侧,与水形成氢键,使蛋白溶于水。这些非共价键虽然较微弱,但数目庞大,因此仍然是维持三级结构的主要力量。
较大蛋白的三级结构往往由几个相对独立的三维实体构成,这些三维实体称为结构域。结构域是在三级结构与超二级结构之间的一个组织层次。一条长的多肽链,可先折叠成几个相对独立的结构域,再缔合成三级结构。这在动力学上比直接折叠更为合理。
结构域在功能上也有其意义。结构域常有相对独立的生理功能,如一些要分泌到细胞外的蛋白,其信号肽(负责使蛋白通过细胞膜)就构成一个结构域。此外,还有与残基修饰有关的结构域、与酶原激活有关的结构域等。各结构域之间常常只有一段肽链相连,称为铰链区。铰链区柔性较强,使结构域之间容易发生相对运动,所以酶的活性中心常位于结构域之间。小蛋白多由一个结构域构成,由多个结构域构成的蛋白一般分子量大,结构复杂。
四、蛋白质的四级结构
由两条或两条以上肽链通过非共价键构成的蛋白质称为寡聚蛋白。其中每一条多肽链称为亚基,每个亚基都有自己的一、二、三级结构。亚基单独存在时无生物活性,只有相互聚合成特定构象时才具有完整的生物活性。四级结构就是各个亚基在寡聚蛋白的天然构象中空间上的排列方式。胰岛素可形成二、六聚体,但不是其功能单位,所以不是寡聚蛋白。判断标准是将发挥生物功能的最小单位作为一个分子。
最简单的寡聚蛋白是血红蛋白。它是由两条α链和两条β链构成的四聚体,分子量65000。分子外形近似球状,每个亚基都和肌红蛋白类似。血红蛋白与氧结合时,α和β链都发生了转动,引起四个亚基间的接触点上的变化。两个α亚基相互接近,两个β亚基则离开。
当酸、热或高浓度的尿素、胍等变性因子作用于寡聚蛋白时,后者会发生构象变化。这种变化可分为两步:首先是亚基彼此解离,然后分开的亚基伸展而成无规线团。如小心处理,可将寡聚蛋白的亚基拆开,而不破坏其三级结构。如血红蛋白可用盐解离成两个半分子,即两个α、β亚基。当透析除去过量的盐后,分开的亚基又可重新结合而恢复活性。如果处理条件强烈,则亚基的多肽链完全展开。这样要恢复天然构象虽很困难,但有些寡聚蛋白仍可恢复。如醛缩酶经酸处理后,其4个亚基完全伸展成无规卷曲,当pH恢复到7左右时,又可恢复如初。这说明一级结构规定了亚基间的结合方式,四级结构的形成也遵从“自我装配”的原则。
相关话题/生物化学
生物化学考研笔记关于生物化学的复习的常见习题和解析
生化笔记 1.1.1蛋白质的结构与功能 考点: 组成蛋白质的20种氨基酸的类别、分类依据及几种特殊氨基酸的分类; 氨基酸的理化性质、成肽反应及体内重要的生物活性肽; 蛋白质的分类及分子结构; 蛋白质的结构(包括一级结构与空间结构)与功能的关系; 蛋白质的理化性质、分离纯化的基本方法及其原理; 蛋白质一级结构的 ...专业课考研资料 本站小编 免费考研网 2019-04-02生物化学考研笔记 王镜岩课堂全精要
第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...专业课考研资料 本站小编 免费考研网 2019-04-02生物化学考试习题分析及自测题
二.习题分析及自测题 一、在做某一多肽样品的一级结构分析时,样品与DNFB反应,再经酸水解得到DNP-Asn;将样品进行氨基酸组成分析,得到如下结果: A -5F -1K-2P-3T -1C -2G -3L -2Q-1V-1D-3H -2M -2R-1W-2E-0I-3N-2S-2Y-0 根据以上信息你能得出哪些结论?(1996年,北医) 考点:多肽链中氨基酸序列分析即蛋白质一级结 ...专业课考研资料 本站小编 免费考研网 2019-04-02生物化学(第三版)课后习题解答
第一章 糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分 ...专业课考研资料 本站小编 免费考研网 2019-04-02沈阳药科大学生物化学笔记
概念第三章1、等电点: 使氨基酸所带正,负电荷相同,静电荷为零时溶液的pH值2、蛋白质的一级结构:是由不同的氨基酸种类、数量和排列顺序,通过肽键而构成的高分有机含氮化合物。3、肽键 : 是蛋白质分子中基本的化学键,它是由是由一分子氨基酸的羧基和另一分子氨基酸的氨基脱水缩合而成的,也称酰胺键。4、肽:氨基酸通过肽 ...专业课考研资料 本站小编 免费考研网 2019-04-02上海交通大学生物化学笔记
D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记-2.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记3.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记4.doc D: ...专业课考研资料 本站小编 免费考研网 2019-04-02江南大学生物化学考研笔记沈同第2版及第3版
生化笔记--沈同(适用第2版及第3版)第一章 概论第一章 概 论 一、 生物化学的概念及其研究内容 生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢和自我繁殖)。那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过蛋白质是生命活动的体现者。 ...专业课考研资料 本站小编 免费考研网 2019-04-01西综历年真题及答案解析(彩色版)生物化学
本历年真题为知识宝库NBF 西医综合历年真题系列:方便搜索版之 生物化学(彩色版),去年共推出了NBF 西综真题四个部分,今年我在 闲暇时,为了广大西综学习者整理了方便搜索使用版,考虑到真题多, 网络学习时翻来翻去寻找相同或不同的试题不是太方便,所以制定了此 系列,细化了目录,在目录中建立了超级连接,方便 ...专业课考研资料 本站小编 免费考研网 2019-03-31微生物学经典题库考研加生物化学笔记
微生物学试题库 微生物学试题(一) 一、写出下列名词解释的中文翻译及作出解释 1.Gram positive bacteria 2.parasporal crystal 3 ,colony 4, life cycle 5,capsule6,endospore 二、简答题 1,试述微生物与当代人类实践的重要关系? 2,简述革兰氏染色的机制? 3.微生物有哪五大共性?其中最基本的是哪一个?为什么 ...专业课考研资料 本站小编 免费考研网 2019-03-29王镜岩生物化学第三版考研笔记_合版
王镜岩生物化学考研第三版笔记 第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达101 ...专业课考研资料 本站小编 免费考研网 2019-03-29王镜岩2011考研生物化学(内部资料)
第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...专业课考研资料 本站小编 免费考研网 2019-03-29生物化学笔记 针对王镜岩等《生物化学》第三版
生物化学笔记针对王镜岩等《生物化学》第三版 适合以王镜岩《生物化学》第三版为考研指导 教材的各高校的生物类考生备考 目 录 第 一 章 概 述------------------------------01 第 二 章 糖 类------------------------------06 第 三 章 脂 类--- ...专业课考研资料 本站小编 免费考研网 2019-03-28芸芸视频考研生物化学复习笔记
第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...专业课考研资料 本站小编 免费考研网 2019-03-27生物化学工程复习资料加强版,考研复习总结资料
生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...专业课考研资料 本站小编 免费考研网 2019-03-25强化农学生物化学辅导讲义
一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...专业课考研资料 本站小编 免费考研网 2019-03-25
