生物化学考研笔记(15)

本站小编 免费考研网/2019-04-03


二、 复制的起点和单位
(一) 基因组能独立进行复制的单位称为复制子。原核生物是单复制子,真核生物是多复制子。每个复制子有起点。通过测定基因出现的频率可以确定起点位置,距离起点越近的基因出现的频率越高。起点有发动复制的序列,也有决定拷贝数的序列。起点的结构是很保守的。
(二) 复制终止点:已发现Ecoli的与复制终止有关位点,其中含有23bp的保守序列,由tus蛋白与此位点结合参与复制的终止。真核生物中似乎没有复制终止点。
(三) 复制多数是双向、对称的,但也有例外。通过放射自显影可以判断复制是双向还是单向:先在低放射性培养基中起始复制,再转移到高放射性培养基中,如是双向复制,其放射自显影图是中间银密度低;单向复制则为一端低。
(四) 单向复制有一些特殊方式:
1. 滚动环:噬菌体φX174DNA是环状单链分子,复制时先形成双链,再将正链切开,将5’连接在细胞膜上,从3’延长,滚动合成出新的正链。
2. 取代环:线粒体DNA复制时是高度不对称的,一条链先复制,另一条链保持单链而被取代,呈D环形状。这是因为两条链的复制起点不同,另一条链的起点露出才能复制。
三、 有关的酶
(一) 反应特点:
1. 以四种dNTP为底物
2. 需要模板指导
3. 需要有引物3’-羟基存在
4. DNA链的生长方向是5’-3’
5. 产物DNA的性质与模板相同
(二) 大肠杆菌DNA聚合酶
1. DNA聚合酶I:单链球状蛋白,含锌。有聚合酶活性和外切酶活性,其中3’-5’外切酶活性起校正作用,5'-3'活性起修复和切除引物作用。DNA聚合酶I主要起损伤修复作用。每秒可聚合10个碱基。切除氨基端5'-3'外切酶活性后称为Klenow fragment,用于引物标记等。
2. DNA聚合酶II:单链,以切口双链DNA为模板,作用不清楚。
3. DNA聚合酶III:起DNA复制作用,功能与聚合酶I相似。全酶共10种亚基,含锌。每秒可聚合1000个碱基。
(三) 真核生物DNA聚合酶:有a、b、g、δ、ε五种,性质与大肠杆菌的酶相似,多无外切酶活性。a相当于聚合酶III,用于引发、滞后链合成;b主要起修复作用,γ位于线粒体,δ合成前导链,但前50个碱基由a合成。
(四) DNA连接酶:使双链DNA切口处的5’-磷酸和3’-羟基生成磷酸二酯键。需供能,细菌用NAD,动物和噬菌体用ATP,形成焦磷酸键的活化形式,再由3’羟基发动亲核攻击,形成磷酸二酯键。大肠杆菌的连接酶作用于粘末端,T4的还可作用于平末端。
四、 半不连续复制(semi-discontinuocos replication)
(一) 复制叉由5’向3’方向连续复制,称为前导链;另一条链复制叉由3’向5’移动,而DNA复制方向不变,形成许多不连续片段,称为冈崎片段,最后连接成完整的DNA,称为滞后链。
(二) 首先由引物合成酶由5’向3’方向合成10个核苷酸以内的RNA引物,然后聚合酶III在引物3’-羟基上合成DNA,再由聚合酶I切除引物,填补空白,最后DNA连接酶将冈崎片段连接起来,形成完整DNA。
(三) 复制具有高度忠实性,其错配几率约为10-10,从热力学上考虑,碱基发生错配的几率约为10-2,酶对底物的选择作用和校正作用各使错配几率下降10-2,所以体外合成DNA的错配几率为10-6。体内复制叉的复杂结构提高了复制的准确性,修复系统对错配加以纠正,进一步提高了复制的忠实性。
五、 解链
复制时必需解链,如靠旋转,则大肠杆菌DNA要达到每分钟6000转。其实复制时是用拓扑异构酶和解螺旋酶来解链的。拓扑异构酶I可切断一条链,牵引另一条链通过切口,再连接起来。每次可消除一个负超螺旋,不需要ATP。同转录有关。拓扑异构酶II每次引入2个负超螺旋,需要ATP。引入负超螺旋可消除复制叉前进带来的张力,促进解链。解螺旋酶通过水解ATP来解开双链,每对碱基需2个ATP。单链结合蛋白(SSB)可与解开的单链结合,防止复性和水解。
六、 DNA复制体的结构
七、 与DNA复制有关的酶和蛋白质因子由30多种,他们在复制叉上形成离散的复合物,彼此配合,进行高度精确的复制,这种结构称为复制体。引物合成酶与另外6种蛋白构成引发体。在DNA复制叉上进行的基本活动包括:
(一) 双链的解开
(二) RNA引物的合成
(三) DNA链的延长
(四) 切除引物,填补缺口,连接相邻的DNA片断
(五) 切除和修复尿嘧啶和错配碱基。
八、 真核生物DNA的复制
(一) 真核生物有核小体结构,复制速度慢,复制叉每分钟移动约1000-3000碱基对,而细菌约为50千碱基对。真核生物有许多复制起点,复制子只有细菌的几十分之一,所以复制时间在同一数量级(E.coli 4.2Mb,酵母、果蝇40Kb,植物300,蛙200,鼠150Kb)。快速生长的原核生物,其复制起点可连续复制,而真核生物采取多复制起点的方法加速复制。
(二) 真核生物复制时,核小体打开,组蛋白直接转移到子代前导链上,滞后链用新合成的组蛋白。所以DNA是半保留的,而组蛋白是全保留的。真核生物冈崎片段长度约为200碱基对(E.coli 1-2Kb),相当于一个核小体的长度。
(三) 真核生物的增殖周期可分为DNA合成前期(G1期)、DNA合成期(S期)、DNA合成后期(G2期)和有丝分裂期(M期)等四个时相,间期为分裂期作准备,进行生物大分子和细胞器的倍增。前期合成DNA复制必须的蛋白质和RNA,复制期先复制常染色质DNA,再复制异染色质。然后进入有丝分裂的准备期。前期变动较大。分裂期后,有些细胞进入前期,开始下一个周期;有些失去分裂能力;有些脱离分裂周期,或进行分化,或进入静止期(G0期)。成年动物大部分细胞处于静止期。
九、 DNA复制的调控
复制有复杂的调控机制。有正调节,也有负调节。有顺式作用,即以某DNA序列为调控因子;也有反式作用,即以基因的产物,如蛋白质或RNA为调控因子。原核生物的复制起点与细胞膜相结合,复制与细胞膜有密切关系。真核生物复制从核膜开始,与质膜也密切相关。dnaA浓度决定起始频率。

第二节 DNA的修复
一、 DNA的损伤
(一) 环境作用
1. 物理因素
² 紫外线:形成嘧啶二聚体,使转录终止,复制受阻。
² 电离辐射:αβγX-射线等,主要通过电离作用造成损伤。可造成多种损伤,如DNA断裂、碱基脱落、杂环破裂、氧化等。
2. 化学因素
² 烷化剂:有活泼烷基,可转移到碱基或磷酸上,如硫酸二甲酯、芥子气等。鸟嘌呤的O6和N7最易烷化,导致错配(GT)或脱落。磷酸三酯不稳定,易断裂。双功能试剂可造成交联。
² 碱基或核苷类似物:FU、BrdU、6-巯基嘌呤等。可竞争抑制核苷酸合成或掺入核酸导致错配。
² 亚硝酸盐及亚硝胺:前者造成脱氨,后者氧化后生成烷化剂和自由基。
² 代谢活化化合物:如苯并笓、黄曲霉毒素等。经混合功能氧化酶催化形成环氧化物,与核酸结合,造成突变。以上物理及化学因素统称诱变剂。
3. 生物因素
² DNA、RNA肿瘤病毒可插入基因组,引起突变。
(二) 自发性损伤
1. 复制时的碱基错配
2. 互变异构:A=NH时可形成A=C,G-OH时可形成GT三键配对
3. 碱基脱氨:C-U,A-I,G-X
4. 碱基丢失:大肠杆菌每代丢失一个嘌呤,哺乳动物可达一万个。嘧啶丢失几率只有嘌呤的1/20。
二、 光复活
光复活酶可被可见光(300-600纳米,400纳米最有效)激活,分解由于紫外线照射而形成的嘧啶二聚体。此酶广泛存在,但人体只存在于淋巴细胞和皮肤成纤维细胞,且是次要修复方式。
三、 切除修复
(一) 细胞内有多种特异的核酸内切酶,可识别DNA的损伤部位,在其附近将DNA单链切开,再由外切酶将损伤链切除,由聚合酶以完整链为模板进行修复合成,最后有连接酶封口。
(二) 碱基脱氨形成的尿嘧啶、黄嘌呤和次黄嘌呤可被专一的N-糖苷酶切除,然后用AP(apurinic/apyrimidinic,缺嘌呤或缺嘧啶)核酸内切酶打开磷酸二酯键,进行切除修复。DNA合成时消耗NADPH合成胸腺嘧啶,可与胞嘧啶脱氨形成的尿嘧啶相区别,提高复制的忠实性。RNA是不修复的,所以采用“廉价”的尿嘧啶。
(三) 切除修复不需光照,也称暗修复。大肠杆菌中有UvrABC系统,可切除修复嘧啶二聚体。人体缺乏相应系统则发生“着色性干皮病”,皮肤干燥,有色素沉着,易患皮肤癌。可加入T4内切酶治疗。
四、 重组修复
以上修复发生在复制前,称为复制前修复。复制时未修复的损伤部分会留下缺口,通过遗传重组进行修复:从完整的母链上将相应序列移至缺口处,用再合成的序列填补母链的空缺。此过程也叫复制后修复。重组修复中原损伤没有除去,但若干代后可逐渐稀释,消除其影响。所需要的酶包括与重组及修复合成有关的酶,如重组蛋白A、B、C及DNA聚合酶、连接酶等。
五、 诱导修复
DNA严重损伤能引起一系列复杂的诱导效应,称为应急反应,包括修复效应、诱变效应、分裂抑制及溶原菌释放噬菌体等。细胞癌变也可能与应急反应有关。应急反应诱导切除和重组修复酶系,还诱导产生缺乏校对功能的DNA聚合酶,加快修复,避免死亡,但提高了变异率。单链DNA诱导重组蛋白A,可水解Lex A蛋白,使一系列基因得到表达,如RecA、UvrABC、SOS修复所需的酶等,产生应急反应。应急反应可作为致癌物的简易检测方法。采用缺乏修复系统、膜透性高的E.coli突变株,并添加鼠肝匀浆液。
六、Ada蛋白
也叫适应性蛋白,可识别甲基化的DNA,将甲基转移到自身的半胱氨酸上,不可逆,故称“自杀修复”。可修复磷酸及鸟苷上的甲基。
七、真核细胞修复特点
1. 多聚腺苷酸-核糖化:由多聚(ADP-核糖)聚合酶催化,用NAD合成并转移到相应蛋白上。可增加一些修复酶的活性,如连接酶。
2. 转录-修复偶联:转录时,若模板链损伤,则转录暂停,转录因子TFIIS使聚合酶退回,CSA/CSB及TFIIE召集修复。若DNA双链损伤,则模板链优先修复。

第三节 逆转录
一、 逆转录酶
含两个亚基,a亚基是b亚基水解产生的。含锌。要求有模板和不少于四个核苷酸的引物,由5’向3’合成DNA。真核生物的信使RNA加入寡聚dT后可作为模板。此酶有多种功能,可先合成DNA-RNA杂合分子,再水解RNA(RNA酶H活力),然后复制其互补链,形成双链DNA。
二、 逆转录过程:
以前任宿主的tRNA为引物,为复制末端,需要借助末端重复结构进行“跳跃”。
三、 意义
(一) 逆转录与细胞恶性转化有关,为肿瘤的研究和防治提供了重要线索。艾滋病、乙肝等也有逆转录过程。
(二) 逆转录病毒经过改造,可作为信息载体,用于肿瘤和遗传疾病的基因治疗。
(三) 真核生物的基因组中多含逆假基因,可能是信使RNA经逆转录而整合到基因组中的。所以真核生物正常细胞也存在逆转录过程。

第八章 RNA的生物合成
第一节 转录
一、 定义
(一) 转录单位
(二) 启动子(promoter)
(三) 终止子(terminator)
二、 RNA聚合酶
(一) 酶的特性:以4种NTP为底物,需模板和镁离子,合成方向也是5’-3’,但不需要引物。
(二) 酶的分类:
1. 噬菌体的RNA聚合酶结构简单,是单链蛋白,功能也简单。
2. 细菌则具有复杂的多亚基结构(450Kd),可识别并转录超过1000个转录单位。
3. 真核生物的酶有多种,根据a-鹅膏蕈碱(环状8肽,阻断RNA延伸)的抑制作用可分为三类:聚合酶A对它不敏感,分布于核仁,转录核糖体RNA;聚合酶B对低浓度敏感,存在于核质,转录信使RNA;聚合酶C位于核质,对高浓度敏感,转录小分子量RNA,如转运RNA、5SRNA等。各种RNA聚合酶都是由10-15种不同亚基组成的多亚基复合物。
4. 线粒体和叶绿体也有RNA聚合酶,结构简单,能合成所有种类RNA。
(三) 酶的构成:大肠杆菌的全酶有5个亚基(α2ββ’ωσ),含2个锌。β催化形成磷酸二酯键,β’结合模板,σ亚基称为起始因子,可使RNA聚合酶稳定地结合到启动子上。ββ’ωσ称为核心酶。σ亚基在不同菌种间变动较大,而核心酶比较恒定。酶与不同启动子的结合能力不同,不同启动因子可识别不同的启动子。σ70识别启动子共有序列,σ32识别热休克基因,σ60在氮饥饿时起作用。σ通过随机移动起作用,不需解链。
(四) 模板:以完整双链DNA为模板,其中仅一条链可转录。转录时局部解链,转录后DNA重新形成双螺旋结构,所以DNA是全保留的。
三、 转录过程
分为起始、延长和终止三个阶段。起始包括对双链DNA特定部位的识别、局部(17bp)解链以及在最初两个核苷酸间形成磷酸二酯键。第一个核苷酸掺入的位置称为转录起点。
起始后起始因子离开,核心酶构象改变,沿模板移动,转录生成杂交双链(12bp),随后DNA互补链取代RNA链,恢复DNA双螺旋结构。延伸速度为50nt/s,酶移动17nm。错误几率为10-5。
聚合酶到达终点时,在终止辅助因子的帮助下停止反应,酶和RNA链脱落,转录结束。
四、 启动子和转录因子
(一) 定义:酶识别、结合、开始转录的一段DNA序列。强启动子2秒钟启动一次转录,弱启动子10分钟一次。
(二) 原核生物:大肠杆菌在起点上游约-10碱基对处有保守序列TATAAT,称为pribnow box,有助于局部解链。在其上游还有TTGACA,称为-35序列,提供RNA聚合酶识别的信号。
(三) 真核生物:复杂,差异较大。
1. 信使RNA的启动子通常有三个保守区,-25到-30有TATA框,是解链位置,并决定转录起点;-75位置有CAAT框,与RNA聚合酶的结合有关;更上游还有GC框,某些转录因子可结合。后两个称为上游因子,对转录起始频率有较大影响。
2. 小RNA的启动子在转录区内部,有一些辅助因子帮助RNA聚合酶识别。
五、 终止子和终止因子
(一) 定义
(二) 所有原核生物的终止子在终点之前都有一个回文结构,可使酶减慢移动或暂停合成。大肠杆菌有两类终止子:
1. 简单终止子,回文区有一段富含GC对的序列,回文后有寡聚尿苷。
2. 依赖ρ的终止子,必须在有ρ因子时才能发挥作用,不含GC对,也无寡聚尿苷。ρ因子是蛋白质,可与酶作用,释放RNA,并使酶脱离。
(三) 某些因子可使酶越过终止子继续转录,称为通读。常见于某些噬菌体的时序控制,早期基因与晚期基因以终止子相隔,早期基因产生抗终止因子,使发生通读以表达晚期基因。
六、 转录的调控
(一) 遗传信息的表达有时序调控和适应调控,转录水平的调控是关键环节,因为这是表达的第一步。转录调控主要发生在起始和终止阶段。
(二) 操纵子是细菌基因表达和调控的单位,有正调节和负调节因子。阻遏蛋白的作用属于负调控。环腺苷酸通过其受体蛋白(CRP)促进转录,可促进许多诱导酶的合成。操纵子可构成综合性调控网络,如SOS反应等。对终止子也有调控作用,如衰减子。
(三) 真核生物不组成操纵子,而是通过激素、生长因子等进行调控。某些DNA序列对转录起增强作用,称为增强子。

第二节 转录后加工
一、 原核生物
(一) 核糖体RNA:大肠杆菌共有7个核糖体RNA的转录单位,每个转录单位由16S、23S、5SRNA和若干转运RNA基因组成。16S和23S之间常由转运RNA隔开。转录产物在RNA酶III的作用下裂解产生核糖体RNA的前体P16和P23,再由相应成熟酶加工切除附加序列。前体加工时还进行甲基化,产生修饰成分,特别是a-甲基核苷。N4,2’-O二甲基胞苷(m4Cm)是16S核糖体RNA特有成分。5S核糖体RNA一般无修饰成分。
(二) 转运RNA:有60个基因,其加工包括:
1. 内切酶在两端切断,大肠杆菌RNA酶P是5’成熟酶
2. 外切酶从3’修剪,除去附加顺序。RNA酶D是3’成熟酶
3. 3’端加上CCAOH,由转运RNA核苷酰转移酶催化,某些转运RNA已有,切除附加序列后即露出。
4. 核苷的修饰:修饰成分包括甲基化碱基和假尿苷,修饰酶具有高度特异性。甲基化对碱基和序列都有严格要求,一般以S-腺苷甲硫氨酸为甲基供体。
(三) 信使RNA:细菌多数不用加工,转录与翻译是偶联的。也有少数多顺反子信使RNA必须由内切酶切成较小的单位,然后翻译。如核糖体大亚基蛋白与RNA聚合酶的b亚基基因组成混合操纵子,转录后需经RNA酶III切开,各自翻译。因为RNA聚合酶的合成水平低得多,切开有利于各自的翻译调控。较长的RNA会产生高级结构,不利于翻译,切开可改变其结构,从而影响其功能。
二、 真核生物
(一) 核糖体RNA:基因拷贝数多,在几十到几千之间。基因成簇排列在一起,由RNA聚合酶I转录生成一个较长的前体,哺乳动物为45S。核仁是其转录、加工和装配成核糖体的场所。RNA酶III等核酸内切酶在加工中起重要作用。5SRNA基因也是成簇排列的,由RNA聚合酶III转录,经加工参与构成大亚基。核糖体RNA可被甲基化,主要在核苷2’羟基,比原核生物甲基化程度高。多数核糖体RNA没有内含子,有些有内含子但不转录。
(二) 转运RNA:由RNA聚合酶III转录, 加工与原核相似,但3’端的CCA都是后加的,还有2’-O-甲基核糖。
(三) 信使RNA:真核生物编码蛋白质的基因以单个基因为转录单位,但有内含子,需切除。信使RNA的原初转录产物是分子量很大的前体,在核内加工时形成大小不等的中间物,称为核内不均一RNA(hnRNA)。其加工过程包括:
1. 5’端加帽子:在转录的早期或转录终止前已经形成。首先从5’端脱去一个磷酸,再与GTP生成5’,5’三磷酸相连的键,最后以S-腺苷甲硫氨酸进行甲基化,形成帽子结构。帽子结构有多种,起识别和稳定作用。
2. 3’端加尾:在核内完成。先由RNA酶III在3’端切断,再由多聚腺苷酸聚合酶加尾。尾与通过核膜有关,还可防止核酸外切酶降解。
3. 内部甲基化:主要是6-甲基腺嘌呤,在hnRNA中已经存在。可能对前体的加工起识别作用。
三、 RNA的拼接
(一) 转运RNA的拼接:由酶催化,酶识别共同的二级结构,而不是序列。通常内含子插入到靠近反密码子处,与反密码子配对,取代反密码子环。第一步由内切酶切除插入序列,不需ATP;第二步由RNA连接酶连接,需要ATP。
(二) 四膜虫核糖体RNA的拼接:某些四膜虫26S核糖体RNA基因中有一个内含子,其拼接只需一价和二价阳离子及鸟苷酸或鸟苷存在即可自发进行。其实质是磷酸酯的转移反应,鸟苷酸起辅助因子的作用,提供游离3’羟基。
(三) 信使RNA:真核生物编码蛋白质的核基因的内含子属于第二类内含子,左端为GT,右端为AG。先在左端切开,产生的5’末端与3’端上游形成5’,2’-磷酸二酯键,构成套索结构。然后内含子右端切开,两个外显子连接起来。通过不同的拼接方式,可形成不同的信使RNA。

第三节RNA的复制
一、 噬菌体QbRNA的复制
其RNA是单链,正链,侵入大肠杆菌后立即翻译,产生复制酶的b亚基,与宿主的三个亚基(α为核糖体蛋白,γ、δ均为肽链延长因子)构成复制酶,进行复制。先以正链为模板合成负链,再根据负链合成正链。合成负链时需要宿主的两个蛋白因子,合成正链则不需要,所以可大量合成。病毒的蛋白质合成受RNA高级结构的调控。
二、 病毒RNA复制的主要方式
(一) 病毒含正链RNA,先合成复制酶,复制后合成其他蛋白质进行装配。如噬菌体Qb及灰质炎病毒。
(二) 病毒含负链和复制酶,先合成正链,再合成病毒蛋白和复制病毒RNA。如狂犬病毒。
(三) 病毒含双链RNA和复制酶,如呼肠孤病毒。先复制正链,再翻译成病毒蛋白,最后合成负链,形成双链RNA分子。
(四) 致癌RNA病毒:如白血病病毒和肉瘤病毒,先逆转录生成DNA前病毒,再转录、翻译。

第四节 RNA生物合成的抑制剂
一、 碱基类似物
有些人工合成的碱基类似物能干扰和抑制核酸的合成。作用方式有以下两类:
(一) 作为代谢拮抗物,直接抑制核苷酸生物合成有关酶类。如6-巯基嘌呤进入体内后可转变为巯基嘌呤核苷酸,抑制嘌呤核苷酸的合成。可作为抗癌药物,治疗急性白血病等。此类物质一般需转变为相应的核苷酸才能表现出抑制作用。
(二) 进入核酸分子,形成异常RNA或DNA,影响核酸的功能并导致突变。5-氟尿嘧啶类似尿嘧啶,可进入RNA,与腺嘌呤配对或异构成烯醇式与鸟嘌呤配对,使A-T对转变为G-C对。因为正常细胞可将其分解,而癌细胞不能,所以可选择性抑制癌细胞生长。
二、 DNA模板功能抑制物
(一) 烷化剂:带有活性烷基,能使DNA烷基化。鸟嘌呤烷化后易脱落,双功能烷化剂可造成双链交联,磷酸基烷化可导致DNA链断裂。通常有较大毒性,引起突变或致癌。
(二) 放线菌素类:可与DNA形成非共价复合物,抑制其模板功能。包括一些抗癌抗生素。
(三) 嵌入染料:含有扁平芳香族发色团,可插入双链DNA相邻碱基对之间。常含丫啶或菲啶环,与碱基大小类似,可在复制时增加一个核苷酸,导致移码突变。如溴乙啶。
三、 RNA聚合酶抑制剂
(一) 利福霉素:抑制细菌RNA聚合酶活性。
(二) 利链菌素:与细菌RNA聚合酶b亚基结合,抑制RNA链的延长。
(三) a-鹅膏蕈碱:抑制真核生物RNA聚合酶。

第九章 蛋白质的生物合成
第一节 概述
一、 遗传密码
(一) 定义:密码子、遗传密码字典
(二) 基本特性
1. 无标点:是连续阅读的,若插入或删除一个碱基,会使以后的读码发生错误,称为移码。
2. 一般不重叠:只有少数基因的遗传密码是重叠的。
3. 简并性:多数氨基酸有几个不同的密码子,只有色氨酸和甲硫氨酸仅一个密码子。编码相同氨基酸的密码子称为同义密码子。简并性可减少有害突变,也使DNA的碱基组成有较大的变化余地,在物种的稳定性上起一定作用。
4. 摆动性:密码子的专一性主要由头两位碱基决定,第三位不重要,称为摆动性。反密码子上的I可与U、A、C配对,G可与U配对。
5. UAG,UAA,UGA不编码氨基酸,作为终止密码子,只能被肽链释放因子识别。AUG是起始密码子。
6. 通用性:在各种生物中几乎完全通用,但发现线粒体有所不同,如人线粒体中UGA编码色氨酸。
二、 核糖体
(一) 结构
1. 核糖体RNA:有很多双螺旋区,16S在识别起始位点中起重要作用。
2. 核糖体蛋白:多数为纤维状,极少数球状。
3. 结构模型:椭圆球状,两亚基结合面上有较大空隙,蛋白质的合成在此进行。大亚基上有两个转运RNA位点:氨酰基位点(A)和肽酰基位点(P),还有一个水解GTP的位点。两个亚基的接触面上有信使RNA结合位点,核糖体上还有许多蛋白因子结合位点。
(二) 多核糖体:由一个信使RNA与一些单个核糖体结合而成,呈念珠状。这样可以同时合成许多肽链,提高了翻译的效率。6个以上的多核糖体具有稳定的结构。

第二节 翻译的过程
一、 准备
(一) 肽链的合成是由氨基端向羧基端进行的,速度很快,大肠杆菌每秒可聚合20个氨基酸。信使RNA是从5’向3’翻译的。
(二) 氨基酸的活化:由氨酰tRNA合成酶催化,分两步:
1. 形成氨基酸-AMP-酶复合物:氨基酸的羧基与5’磷酸形成高能酸酐键而活化。
2. 转移:氨基酸转移到转运RNA3’末端,与3’或2’羟基结合。总反应为:
氨基酸+tRNA+ATP=氨酰tRNA+AMP+PPi
此酶专一性很高,只作用于L-氨基酸,每种氨基酸都有一个专一的酶。酶有校对机制,一方面对转运RNA有专一性,另一方面还有水解位点,可水解错误酰化的氨基酸。
(三) 转运RNA的作用:起接头作用,根据密码子决定氨基酸的去向。转运RNA反密码子的某些突变可抵销一些有害突变,称为校正突变。
二、 肽链合成的起始
(一) 起始信号:起始密码子是AUG,其上游约10个核苷酸处有一段富含嘌呤的序列,可与16S rRNA的3’端互补,与起始有关。
(二) 起始复合物的形成:
1. 起始氨基酸:是N-甲酰甲硫氨酸,其转运RNA也有所不同,称为tRNAf,与甲硫氨酸结合后被甲酰化酶以甲酰四氢叶酸甲基化,生成fMet-tRNAf。

相关话题/生物化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 生物化学考研笔记关于生物化学的复习的常见习题和解析
    生化笔记 1.1.1蛋白质的结构与功能 考点: 组成蛋白质的20种氨基酸的类别、分类依据及几种特殊氨基酸的分类; 氨基酸的理化性质、成肽反应及体内重要的生物活性肽; 蛋白质的分类及分子结构; 蛋白质的结构(包括一级结构与空间结构)与功能的关系; 蛋白质的理化性质、分离纯化的基本方法及其原理; 蛋白质一级结构的 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学考研笔记 王镜岩课堂全精要
    第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学考试习题分析及自测题
    二.习题分析及自测题 一、在做某一多肽样品的一级结构分析时,样品与DNFB反应,再经酸水解得到DNP-Asn;将样品进行氨基酸组成分析,得到如下结果: A -5F -1K-2P-3T -1C -2G -3L -2Q-1V-1D-3H -2M -2R-1W-2E-0I-3N-2S-2Y-0 根据以上信息你能得出哪些结论?(1996年,北医) 考点:多肽链中氨基酸序列分析即蛋白质一级结 ...
    本站小编 免费考研网 2019-04-02
  • 生物化学(第三版)课后习题解答
    第一章 糖类 提要 糖类是四大类生物分子之一,广泛存在于生物界,特别是植物界。糖类在生物体内不仅作为结构成分和主要能源,复合糖中的糖链作为细胞识别的信息分子参与许多生命过程,并因此出现一门新的学科,糖生物学。 多数糖类具有(CH2O)n的实验式,其化学本质是多羟醛、多羟酮及其衍生物。糖类按其聚合度分 ...
    本站小编 免费考研网 2019-04-02
  • 沈阳药科大学生物化学笔记
    概念第三章1、等电点: 使氨基酸所带正,负电荷相同,静电荷为零时溶液的pH值2、蛋白质的一级结构:是由不同的氨基酸种类、数量和排列顺序,通过肽键而构成的高分有机含氮化合物。3、肽键 : 是蛋白质分子中基本的化学键,它是由是由一分子氨基酸的羧基和另一分子氨基酸的氨基脱水缩合而成的,也称酰胺键。4、肽:氨基酸通过肽 ...
    本站小编 免费考研网 2019-04-02
  • 上海交通大学生物化学笔记
    D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记-2.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记3.doc D:\Updation\百度文库\上海交通大学生物化学笔记.rar\上海交通大学生物化学笔记\交大生化笔记4.doc D: ...
    本站小编 免费考研网 2019-04-02
  • 江南大学生物化学考研笔记沈同第2版及第3版
    生化笔记--沈同(适用第2版及第3版)第一章 概论第一章 概 论 一、 生物化学的概念及其研究内容 生物体的生命现象(过程)作为物质运动的一种独有的特殊的运动形式,其基本表现形式就是(新陈代谢和自我繁殖)。那么构成这种特殊运动形式物质基础又是什么呢?恩格斯很早就说过蛋白质是生命活动的体现者。 ...
    本站小编 免费考研网 2019-04-01
  • 西综历年真题及答案解析(彩色版)生物化学
    本历年真题为知识宝库NBF 西医综合历年真题系列:方便搜索版之 生物化学(彩色版),去年共推出了NBF 西综真题四个部分,今年我在 闲暇时,为了广大西综学习者整理了方便搜索使用版,考虑到真题多, 网络学习时翻来翻去寻找相同或不同的试题不是太方便,所以制定了此 系列,细化了目录,在目录中建立了超级连接,方便 ...
    本站小编 免费考研网 2019-03-31
  • 微生物学经典题库考研加生物化学笔记
    微生物学试题库 微生物学试题(一) 一、写出下列名词解释的中文翻译及作出解释 1.Gram positive bacteria 2.parasporal crystal 3 ,colony 4, life cycle 5,capsule6,endospore 二、简答题 1,试述微生物与当代人类实践的重要关系? 2,简述革兰氏染色的机制? 3.微生物有哪五大共性?其中最基本的是哪一个?为什么 ...
    本站小编 免费考研网 2019-03-29
  • 王镜岩生物化学第三版考研笔记_合版
    王镜岩生物化学考研第三版笔记 第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达101 ...
    本站小编 免费考研网 2019-03-29
  • 王镜岩2011考研生物化学(内部资料)
    第一章 概 述 第一节 概 述 一、生物分子是生物特有的有机化合物 生物分子泛指生物体特有的各类分子,它们都是有机物。典型的细胞含有一万到十万种生物分子,其中近半数是小分子,分子量一般在500以下。其余都是生物小分子的聚合物,分子量很大,一般在一万以上,有的高达1012,因而称为生物大分子。构成生物大分 ...
    本站小编 免费考研网 2019-03-29
  • 生物化学笔记 针对王镜岩等《生物化学》第三版
    生物化学笔记针对王镜岩等《生物化学》第三版 适合以王镜岩《生物化学》第三版为考研指导 教材的各高校的生物类考生备考 目 录 第 一 章 概 述------------------------------01 第 二 章 糖 类------------------------------06 第 三 章 脂 类--- ...
    本站小编 免费考研网 2019-03-28
  • 芸芸视频考研生物化学复习笔记
    第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...
    本站小编 免费考研网 2019-03-27
  • 生物化学工程复习资料加强版,考研复习总结资料
    生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...
    本站小编 免费考研网 2019-03-25
  • 强化农学生物化学辅导讲义
    一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...
    本站小编 免费考研网 2019-03-25