生物化学笔记 针对王镜岩等《生物化学》第三版(10)

本站小编 免费考研网/2019-03-28


二、密度
利用密度梯度离心可以测定大分子的浮力密度。CsCl溶解度大,可制成8M溶液。DNA的浮力密度一般在1.7以上,RNA为1.6,蛋白质为1.35-1.40。分子量相同结构不同的DNA沉降系数不同,线形双螺旋DNA、线形单链DNA、超螺旋DNA沉降系数之比为1:1.14:1.4。因此通过测定沉降系数可以了解DNA的结构及其变化。
三、紫外吸收
嘌呤和嘧啶因其共轭体系而有  强紫外吸收。核酸在260nm有紫外吸收峰,蛋白质在280nm。利用紫外吸收可测定核酸的浓度和纯度。一般测定OD260/OD280,DNA=1.8,RNA=2.0。如果含有蛋白质杂质,比值明显下降。不纯的核酸不能用紫外吸收法测定浓度。紫外吸收改变是DNA结构变化的标志,当双链DNA解链时碱基外露增加,紫外吸收明显增加,称为增色效应。双链、单链DNA与核苷酸的紫外吸收之比是1:1.37:1.6。
四、DNA的变性
在一定条件下,双链DNA解链变成单链DNA的现象称为变性或熔化。加热引起的变性称为热变性;碱性条件(pH>11.3)下,DNA发生碱变性。此外,尿素、有机溶剂、甚至脱盐都可引起DNA变性。除去变性因素后,互补的单链DNA又可以重新结合为双链DNA,称为复性或退火。DNA复性由局部序列配对形成双链核心的慢速成核反应开始,然后经过快速的所谓拉链反应而完成。
DNA变性后粘度降低,密度和吸光度升高。
变性后的单链DNA与具有同一性序列的DNA链或RNA分子结合形成双链的DNA-DNA或DNA-RNA杂交分子的过程称为杂交或分子杂交。分子杂交技术的发展和应用,对分子生物学和生物高技术的发展起到了重要的推动作用。
通常将50%DNA分子变性时的温度称为熔点(Tm)。一般DNA在生理条件下的熔点在85-95度之间。熔点主要取决于碱基组成,G-C对含量越高,熔点越高。一般G-C对含量40%时熔点是87度,每增加1%,熔点增加约0.4度。离子强度也有影响,因为离子能与DNA结合,使其稳定,所以离子强度越低,熔点越低,熔解范围越窄。因此DNA应保存在高盐溶液中。如果DNA不纯,则变性温度范围也会扩大。甲酰胺可以使碱基对之间的氢键不稳定,降低熔点。所以分子生物实验中经常用甲酰胺使DNA变性,以避免高温引起DNA断裂。乙醇、丙酮、尿素等也可促进DNA变性。
DNA的复性速度与其初始浓度C0及复杂度有关。当温度、离子强度等其他条件固定时,一半DNA复性时的C0t值只与其复杂度有关,可用来计算基因组的复杂度。
五、限制性内切酶
限制性内切酶II识别并切割特定的回文序列,生物体用来防止外源DNA的影响,在基因工程中用于DNA的切割,被称为分子手术刀。如EcoRI,E是属名,co是种名,R是菌株名,I是发现次序。
六、核酸的提纯
提取:一般先破碎细胞,得到DNP或RNP。然后用酚-氯仿除蛋白,用乙醇或异丙醇将核酸沉淀出来,干燥后再溶解即可。
纯化:常用电泳或层析。PAGE一般用于分离1K以下的核酸,如测序。较大的要用琼脂糖电泳。纯化mRNA常用oligo-dT的层析柱或磁珠。
目前核酸研究的特点
八十年代以后,核酸研究有以下特点:
1. RNA研究受到重视。以前的研究以DNA为重点,现在RNA成为研究热点。核糖酶的发现和RNA的加工编辑机制是两大发现。一个基因在不同组织或不同生理状态下,从不同转录起始位点开始转录,通过不同的剪接方式和不同的3’端成熟机制,可形成不同的蛋白质,这是一种比基因重排更灵活的调控方式。RNA的应用也日益广泛,如用ribozyme切割病毒核酸,用反义RNA阻断有害基因的表达等。因此,有人称90年代为RNA的十年。
2.研究材料从原核走向真核。真核生物的复制、转录、翻译都比原核复杂得多,材料的改变导致了ribozyme、RNA的剪接、编辑等重大发现,大大推动了核酸的研究。
3.研究核酸与核酸、核酸与其他生物大分子的相互作用。生物体内的核酸多数处于各种复合物中,其结构与功能都与复合物相关。真核基因转录调控的研究主要集中在顺式作用元件(cis-acting elements)、反式作用因子(trans-acting factor)、以及它们之间的相互作用上。核糖体的结构与功能、氨酰tRNA的合成一直是研究核酸与蛋白质相互作用的两个重要对象,近来又形成剪接体(spliceo-some)、核不均一核糖核蛋白体(hn-RNP)、核小分子核糖核蛋白体(snRNP)、编辑体(editosome)等研究热点。
研究进入分子水平与整体水平相结合的阶段。比如果蝇的发育受调控基因网络的控制,一些实验室正在以整体与分子水平相结合的方式进行研究。
 本 章 名 词 解 释
核苷(nucleoside):是嘌呤或嘧啶碱通过共价键与戊糖连接组成的化合物。核糖与碱基一般都是由糖的异头碳与嘧啶的N-1或嘌呤的N-9之间形成的β-N-糖键连接。
核苷酸(uncleoside):核苷的戊糖成分中的羟基磷酸化形成的化合物。
"cAMP(cycle AMP):3ˊ,5ˊ-环腺苷酸,是细胞内的第二信使,由于某部些激素或其它分子信号刺激激活腺苷酸环化酶催化ATP环化形成的。"
磷酸二脂键(phosphodiester linkage):一种化学基团,指一分子磷酸与两个醇(羟基)酯化形成的两个酯键。该酯键成了两个醇之间的桥梁。例如一个核苷的3ˊ羟基与别一个核苷的5ˊ羟基与同一分子磷酸酯化,就形成了一个磷酸二脂键。
"脱氧核糖核酸(DNA):含有特殊脱氧核糖核苷酸序列的聚脱氧核苷酸,脱氧核苷酸之间是是通过3ˊ,5ˊ-磷酸二脂键连接的。DNA是遗传信息的载体。"
"核糖核酸(RNA):通过3ˊ,5ˊ-磷酸二脂键连接形成的特殊核糖核苷酸序列的聚核糖核苷酸。"
"核糖体核糖核酸(Rrna,ribonucleic acid):作为组成成分的一类 RNA,rRNA是细胞内最 丰富的 RNA ."
"信使核糖核酸(mRNA,messenger ribonucleic acid):一类用作蛋白质合成模板的RNA ."
"转移核糖核酸(Trna,transfer ribonucleic acid):一类携带激活氨基酸,将它带到蛋白质合成部位并将氨基酸整合到生长着的肽链上RNA。TRNA含有能识别模板mRNA上互补密码的反密码。"
转化(作用)(transformation):一个外源DNA 通过某种途径导入一个宿主菌,引起该菌的遗传特性改变的作用。
转导(作用)(transduction):借助于病毒载体,遗传信息从一个细胞转移到另一个细胞。
"碱基对(base pair):通过碱基之间氢键配对的核酸链中的两个核苷酸,例如A与T或U , 以及G与C配对 。 "
夏格夫法则(Chargaff’s rules):所有DNA中腺嘌呤与胸腺嘧啶的摩尔含量相等(A=T),鸟嘌呤和胞嘧啶的摩尔含量相等(G=C),既嘌呤的总含量相等(A+G=T+C)。DNA的碱基组成具有种的特异性,但没有组织和器官的特异性。另外,生长和发育阶段`营养状态和环境的改变都不影响DNA的碱基组成。
DNA的双螺旋(DNAdouble helix):一种核酸的构象,在该构象中,两条反向平行的多核甘酸链相互缠绕形成一个右手的双螺旋结构。碱基位于双螺旋内侧,磷酸与糖基在外侧,通过磷酸二脂键相连,形成核酸的骨架。碱基平面与假象的中心轴垂直,糖环平面则与轴平行,两条链皆为右手螺旋。双螺旋的直径为2nm,碱基堆积距离为0.34nm, 两核甘酸之间的夹角是36゜,每对螺旋由10对碱基组成,碱基按A-T,G-C配对互补,彼此以氢键相联系。维持DNA双螺旋结构的稳定的力主要是碱基堆积力。双螺旋表面有两条宽窄`深浅不一的一个大沟和一个小沟。
大沟(major groove)和小沟(minor groove):绕B-DNA双螺旋表面上出现的螺旋槽(沟),宽的沟称为大沟,窄沟称为小沟。大沟,小沟都、是由于碱基对堆积和糖-磷酸骨架扭转造成的。
DNA超螺旋(DNAsupercoiling):DNA本身的卷曲一般是DNA双`螺旋的弯曲欠旋(负超螺旋)或过旋(正超螺旋)的结果。
拓扑异构酶(topoisomerse):通过切断DNA的一条或两条链中的磷酸二酯键,然后重新缠绕和封口来改变DNA连环数的酶。拓扑异构酶Ⅰ、通过切断DNA中的一条链减少负超螺旋,增加一个连环数。某些拓扑异构酶Ⅱ也称为DNA促旋酶。
核小体(nucleosome):用于包装染色质的结构单位,是由DNA链缠绕一个组蛋白核构成的。
染色质(chromatin): 是存在与真核生物间期细胞核内,易被碱性染料着色的一种无定形物质。染色质中含有作为骨架的完整的双链DNA,以及组蛋白`非组蛋白和少量的DNA。
染色体(chromosome):是染色质在细胞分裂过程中经过紧密缠绕`折叠`凝缩和精细包装形成的具有固定形态的遗传物质存在形式。简而言之,染色体是一个大的单一的双链DNA分子与相关蛋白质组成的复合物,DNA中含有许多贮存和传递遗传信息的基因。
DNA变性(DNAdenaturation):DNA双链解链,分离成两条单链的现象。
退火(annealing):既DNA由单链复性、变成双链结构的过程。来源相同的DNA单链经退火后完全恢复双链结构的过程,同源DNA之间`DNA和RNA之间,退火后形成杂交分子。
"熔解温度(melting temperature,Tm):双链DNA熔解彻底变成单链DNA的温度范围的中点温度。"
增色效应(hyperchromic effect):当双螺旋DNA熔解(解链)时,260nm处紫外吸收增加的现象。
减色效应(hypochromic effect):随着核酸复性,紫外吸收降低的现象。
核酸内切酶(exonuclease): 核糖核酸酶和脱氧核糖核酸酶中能够水解核酸分子内磷酸二酯键的酶。
核酸外切酶(exonuclease):从核酸链的一端逐个水解核甘酸的酶。
限制性内切酶(restriction endonuclease):一种在特殊核甘酸序列处水解双链DNA的内切酶。Ⅰ型限制性内切酶既能催化宿主DNA的甲基化,又催化非甲基化的DNA的水解;而Ⅱ型限制性内切酶只催化非甲基化的DNA的水解。
限制酶图谱(restriction map):同一DNA用不同的限制酶进行切割,从而获得各种限制酶的切割位点,由此建立的位点图谱有助于对DNA的结构进行分析。
反向重复序列(inverted repeat sequence):在同一多核甘酸内的相反方向上存在的重复的核甘酸序列。在双链DNA中反向重复可能引起十字形结构的形成。
重组DNA技术(recombination DNA technology):也称之为基因工程(genomic engineering).利用限制性内切酶和载体,按照预先设计的要求,将一种生物的某种目的基因和载体DNA重组后转入另一生物细胞中进行复制`转录和表达的技术。
基因(gene):也称为顺反子(cistron).泛指被转录的一个DNA片段。在某些情况下,基因常用来指编码一个功能蛋白或DNA分子的DNA片段。

 
 第七章  维生素
第一节  概  述
一、定义
维生素是机体必需的多种生物小分子营养物质。1894年荷兰人Ejkman用白米养鸡观察到脚气病现象,后来波兰人Funk从米糠中发现含氮化合物对此病颇有疗效,命名为vitamine,意为生命必须的胺。后来发现并非所有维生素都是胺,所以去掉词尾的e,成为Vitamin。
维生素有以下特点:
1.是一些结构各异的生物小分子;
2.需要量很少;
3.体内不能合成或合成量不足,必需直接或间接从食物中摄取;
4.主要功能是参与活性物质(酶或激素)的合成,没有供能和结构作用。水溶性维生素常作为辅酶前体,起载体作用,脂溶性维生素参与一些活性分子的构成,如VA构成视紫红质,VD构成调节钙磷代谢的激素。
二、分类
维生素的结构差异较大,一般按溶解性分为脂溶性和水溶性两大类。
脂溶性维生素 不溶于水,易溶于有机溶剂,在食物中与脂类共存,并随脂类一起吸收。不易排泄,容易在体内积存(主要在肝脏)。包括维生素A(A1,A2)、D(D2,D3)、E(α,β,γ,δ)、K(K1,K2,K3)等。
水溶性维生素 易溶于水,易吸收,能随尿排出,一般不在体内积存,容易缺乏。包括B族维生素和维生素C。
三、命名
维生素虽然是小分子,但结构较复杂,一般不用化学系统命名。早期按发现顺序及来源用字母和数字命名,如维生素A、维生素AB2等。同时还根据其功能命名为“抗…维生素”,如抗干眼病维生素(VA)、抗佝偻病维生素(VD)等。后来又根据其结构及功能命名,如视黄醇(VA1)、胆钙化醇(VD3)等。
四、人体获取维生素的途径
1.主要由食物直接提供 维生素在动植物组织中广泛存在,绝大多数维生素直接来源于食物。少量来自以下途径:
2.由肠道菌合成 人体肠道菌能合成某些维生素,如VK、VB12、吡哆醛、泛酸、生物素和叶酸等,可补充机体不足。长期服用抗菌药物,使肠道菌受到抑制,可引起VK等缺乏。
3.维生素原在体内转变 能在体内直接转变成维生素的物质称为维生素原。植物食品不含维生素A,但含类胡萝卜素,可在小肠壁和肝脏氧化转变成维生素A。所以类胡萝卜素被称为维生素A原。
4.体内部分合成 储存在皮下的7-脱氢胆固醇经紫外线照射,可转变成VD3。因此矿工要补照紫外线。人体还可利用色氨酸合成尼克酰胺,所以长期以玉米为主食的人由于色氨酸不足,容易发生糙皮病等尼克酰胺缺乏症。
五、有关疾病
机体对维生素的需要量极少,一般日需要量以毫克或微克计。维生素缺乏会引起代谢障碍,出现维生素缺乏症。过多也会干扰正常代谢,引起维生素过多症。因水溶性维生素容易排出,所以维生素过多症只见于脂溶性维生素,如长期摄入过量维生素A、D会中毒。
第二节 脂溶性维生素 
一、维生素A
维生素A又称抗干眼醇,有A1、A2两种,A1是视黄醇,A2是3-脱氢视黄醇,活性是前者的一半。肝脏是储存维生素A的场所。
植物中的类胡萝卜素是VA前体,一分子β胡萝卜素在一个氧化酶催化下加两分子水,断裂生成两分子VA1。这个过程在小肠粘膜内进行。类胡萝卜素还包括α、γ胡萝卜素、隐黄质、番茄红素、叶黄素等,前三种加水生成一分子VA1,后两种不生成VA1。
维生素A与暗视觉有关。维生素A在醇脱氢酶作用下转化为视黄醛,11-顺视黄醛与视蛋白上赖氨酸氨基结合构成视紫红质,视紫红质在光中分解成全反式视黄醛和视蛋白,在暗中再合成,形成一个视循环。维生素A缺乏可导致暗视觉障碍,即夜盲症。食用肝脏及绿色蔬菜可治疗。全反式视黄醛主要在肝脏中转变成11-顺视黄醛,所以中医认为“肝与目相通”。
维生素A的作用很多,但因缺乏维生素A的动物极易感染,所以研究很困难。已知缺乏维生素A时类固醇激素减少,因为其前体合成时有一步羟化反应需维生素A参加。另外缺乏维生素A时表皮黏膜细胞减少,角化细胞增加。有人认为是因为维生素A与细胞分裂分化有关,有人认为是因为维生素A与粘多糖、糖蛋白的合成有关,可作为单糖载体。维生素A还与转铁蛋白合成、免疫、抗氧化等有关。
维生素A过量摄取会引起中毒,可引发骨痛、肝脾肿大、恶心腹泻及鳞状皮炎等症状。大量食用北极熊肝或比目鱼肝可引起中毒。
二、维生素D
又称钙化醇,是类固醇衍生物,含环戊烷多氢菲结构。可直接摄取,也可由维生素D原经紫外线照射转化。植物油和酵母中的麦角固醇转化为D2(麦角钙化醇),动物皮下的7-脱氢胆固醇转化为D3(胆钙化醇)。
维生素D与动物骨骼钙化有关。钙化需要足够的钙和磷,其比例应在1:1到2:1之间,还要有维生素D的存在。
"维生素D3先在肝脏羟化形成25-羟维生素D3,然后在肾再羟化生成1,25-(OH)2-D3。第二次羟化受到严格调控,平时只产生无活性的24位羟化产物,只有当血钙低时才有甲状旁腺素分泌,使1-羟化酶有活性。1,25-(OH)2-D3是肾皮质分泌的一种激素,作用于肠粘膜细胞和骨细胞,与受体结合后启动钙结合蛋白的合成,从而促进小肠对钙磷的吸收和骨内钙磷的动员和沉积。"
食物中维生素D含量少,同时又缺乏紫外线照射的人易发生骨折。肝胆疾病、肾病、或某些药物也会抑制羟化。摄入过多也会引起中毒,发生迁移性钙化,导致肾、心、胰、子宫及滑膜粘蛋白钙化。高血钙也会导致肾结石,而骨骼却因钙被抽走而疏松软化。
三、维生素E
又称生育酚,含有一个6-羟色环和一个16烷侧链,共有8种其色环的取代基不同。α生育酚的活性最高。
存在于蔬菜、麦胚、植物油的非皂化部分,对动物的生育是必需的。缺乏时还会发生肌肉退化。生育酚极易氧化,是良好的脂溶性抗氧化剂。可清除自由基,保护不饱和脂肪酸和生物大分子,维持生物膜完好,延缓衰老。
维生素E很少缺乏,毒性也较低。早产儿缺乏会产生溶血性贫血,成人回导致红细胞寿命短,但不致贫血。
四、维生素K
"天然维生素K有K1、K2两种,都由2-甲基-1,4-萘醌和萜类侧链构成。人工合成的K3无侧链。K1存在于绿叶蔬菜及动物肝脏中,K2由人体肠道细菌合成。"
维生素K参与蛋白质谷氨酸残基的γ-羧化。凝血因子Ⅱ、Ⅶ、Ⅸ、Ⅹ肽链中的谷氨酸残基在翻译后加工过程中,由蛋白羧化酶催化,成为γ-羧基谷氨酸(Gla)。这两个羧基可络合钙离子,对钙的输送和调节有重要意义。有关凝血因子与钙结合,并通过钙与磷脂结合形成复合物,发挥凝血功能。这些凝血因子称为维生素K依赖性凝血因子。
缺乏维生素K时常有出血倾向。新生儿、长期服用抗生素或吸收障碍可引起缺乏。
第三节 水溶性维生素
一、硫胺素(VB1)
由一个取代的噻唑环和一个取代的嘧啶环组成,因噻唑环含硫,嘧啶环有氨基取代而得名。他就是Funk发现的vitamine。
硫胺素与ATP反应,生成其活性形式:硫胺素焦磷酸(TPP),即脱羧辅酶。其分子中氮和硫之间的碳原子性质活泼,易脱氢。生成的负碳离子有亲核催化作用。羧化辅酶作为酰基载体,是α酮酸脱羧酶的辅基,也是转酮醇酶的辅基,在糖代谢中起重要作用。缺乏硫胺素会导致糖代谢障碍,使血液中丙酮酸和乳酸含量增多,影响神经组织供能,产生脚气病。主要表现为肌肉虚弱、萎缩,小腿沉重、下肢水肿、心力衰竭等。可能是由于缺乏TPP而影响神经的能源与传导。
硫胺素在糙米、油菜、猪肝、鱼、瘦肉中含量丰富。但生鱼中含有破坏B1的酶,咖啡、可可、茶等饮料也含有破坏B1的因子。
二、核黄素(VB2)
核黄素是异咯嗪与核醇的缩合物,是黄素蛋白的辅基。它有两种活性形式,一种是黄素单核苷酸(FMN),一种是黄素腺嘌呤二核苷酸(FAD)。这里把核黄素看作核苷,即把异咯嗪看作碱基,把核醇看作核糖。
异咯嗪的N1、N10能可逆地结合一对氢原子,所以可作为氧化还原载体,构成多种黄素蛋白的辅基,在三羧酸循环、氧化磷酸化、α酮酸脱羧、β氧化、氨基酸脱氨、嘌呤氧化等过程中起传递氢和电子的作用。
主要从食物中摄取,如谷类、黄豆、猪肝、肉、蛋、奶等,也可由肠道细菌合成。冬季北方缺少阳光,植物合成V-B2也少,常出现口角炎。缺乏V-B2还可引起唇炎、舌炎、贫血等。
三、泛酸(VB3)
也叫遍多酸,广泛存在,极少缺乏。由一分子β丙氨酸与一分子羧酸缩合而成。
泛酸可构成辅酶A,是酰基转移酶的辅酶。也可构成酰基载体蛋白(CAP),是脂肪酸合成酶复合体的成分。
四、吡哆素(VB6)
包括吡哆醇、吡哆醛和吡哆胺3种,可互相转化。吡哆素是吡啶衍生物,活性形式是磷酸吡哆醛和磷酸吡哆胺,是转氨酶、氨基酸脱羧酶的辅酶。磷酸吡哆醛的醛基作为底物氨基酸的结合部位,醛基的邻近羟基和对位氮原子还参与催化部位的构成。在转氨反应中,磷酸吡哆醛结合氨基酸,释放出相应的α酮酸,转变为磷酸吡哆胺,再结合α酮酸释放氨基酸,又变成磷酸吡哆醛。
缺乏V-B6可引起周边神经病变及高铁红细胞贫血症。因为5-羟色胺、γ-氨基丁酸、去甲肾上腺素等神经递质的合成都需要V-B6(氨基酸脱羧反应),而血红素前体的合成也需要V-B6。肉、蛋、蔬菜、谷类中含量较多。新生婴儿易缺乏。
五、尼克酰胺(VPP)
尼克酰胺和尼克酸分别是吡啶酰胺和吡啶羧酸,都是抗糙皮病因子,又称VPP。其活性形式有两种,尼克酰胺腺嘌呤二核苷酸(NAD)和尼克酰胺腺嘌呤二核苷酸磷酸(NADP)。在体内先合成去酰胺NAD,再接受谷氨酰胺提供的氨基成为NAD,再磷酸化则成为NADP。
NAD和NADP是脱氢辅酶,分别称为辅酶Ⅰ和辅酶Ⅱ。二者利用吡啶环的N1和N4可逆携带一个电子和一个氢原子,参与氧化还原反应。辅酶Ⅰ在分解代谢中广泛接受还原能力,最终传给呼吸链放出能量。辅酶Ⅱ则只从葡萄糖及葡萄糖酸的磷酸酯获得还原能力,用于还原性合成及羟化反应。需要尼克酰胺的酶多达百余种。
人体能用色氨酸合成尼克酸,但合成率极低(60:1),而且需要B1、B2、B6,所以仍需摄取。抗结核药异烟肼的结构与尼克酰胺类似,两者有拮抗作用,长期服用异烟肼时应注意补充尼克酰胺。花生、豆类、肉类和酵母中含量较高。
尼克酸或烟酸肌醇有舒张血管的作用,可用于冠心病等,但可降低cAMP水平,使血糖及尿酸升高,有诱发糖尿病及痛风的风险。长期使用大量尼克酸可能损害肝脏。
六、生物素(biotin)
由杂环与戊酸侧链构成,又称维生素H,缺乏可引起皮炎。在生鸡蛋清中有抗生物素蛋白(avidin),能与生物素紧密结合,使其失去活性。
生物素侧链羧基可通过酰胺键与酶的赖氨酸残基相连。生物素是羧基载体,其N1可在耗能的情况下被二氧化碳羧化,再提供给受体,使之羧化。如丙酮酸羧化为草酰乙酸、乙酰辅酶A羧化为丙二酰辅酶A等都由依赖生物素的羧化酶催化。
花生、蛋类、巧克力含量最高。
以上六种维生素都与能量代谢有关。下面两种维生素与生血有关。
七、叶酸(folic acid,FA)
"又称维生素M,由蝶酸与谷氨酸构成。活性形式是四氢叶酸(FH4),即蝶呤环被部分还原。四氢叶酸是多种一碳单位的载体,分子中的N5,N10可单独结合甲基、甲酰基、亚氨甲基,共同结合甲烯基和甲炔基。因此在嘌呤、嘧啶、胆碱和某些氨基酸(Met、Gly、Ser)的合成中起重要作用。缺乏叶酸则核酸合成障碍,快速分裂的细胞易受影响,可导致巨红细胞贫血(巨大而极易破碎)。"
叶酸容易缺乏,特别是孕妇。叶酸分布广泛,肉类中含量丰富。苯巴比妥及口服避孕药等药物干扰叶酸吸收与代谢。
八、钴胺素(VB12)
是一个抗恶性贫血的维生素,存在于肝脏。分子中含钴和咕啉。咕啉类似卟啉,第六个配位可结合其他集团,产生各种钴胺素,包括与氢结合的氢钴胺素、与甲基结合的甲基钴胺素、与5’-脱氧腺苷结合的辅酶B12等。
"一些依赖辅酶B12的酶类催化1,2迁移分子重排反应,即相邻碳原子上氢原子与某一基团的易位反应。例如在丙酸代谢中,催化甲基丙二酰辅酶A转变为琥珀酰辅酶A的变位酶就以辅酶B12为辅助因子。"
甲基钴胺素可作为甲基载体,接受甲基四氢叶酸提供的甲基,用于合成甲硫氨酸。甲硫氨酸可作为通用甲基供体,参与多种分子的甲基化反应。因为甲基四氢叶酸只能通过这个反应放出甲基,所以缺乏钴胺素时叶酸代谢障碍,积累甲基四氢叶酸。缺乏钴胺素可导致巨红细胞贫血。
胃粘膜能分泌一种粘蛋白,可与V-B12结合,促进吸收,称为内因子。缺乏内因子时易被肠内细菌及寄生虫夺去,造成缺乏。素食者也易缺乏。
九、抗坏血酸(V-C)
是烯醇式L-古洛糖酸内酯,有较强的酸性。容易氧化,是强力抗氧化剂,也可作为氧化还原载体。
抗坏血酸还参与氨基酸的羟化。胶原中脯氨酸和赖氨酸的羟化都需要抗坏血酸作为酶的辅因子。缺乏抗坏血酸会影响胶原合成及结缔组织功能,使毛细血管脆性增高,发生坏血病。
肾上腺皮质激素的合成也需要V-C参加羟化。V-C可还原铁,促进其吸收;保护A、E及某些B族维生素免遭氧化。
第四节 其他辅酶
五、辅酶Q
又称泛醌,广泛存在于线粒体中,与细胞呼吸链有关。泛醌起传递氢的作用。
六、硫辛酸
是酵母和一些微生物的生长因子,可以传递氢。有氧化型和还原型。

 
 第八章  抗生素
第一节 概述
一、发现
一类微生物抑制或杀死其他种类微生物的作用称为拮抗作用。拮抗作用是微生物界的普遍现象,早在微生物发现之前,人们已经利用拮抗作用治病,如我国人利用豆腐上的霉治疗疮,美洲人用发霉的面包治疗伤口化脓等。
随着微生物学的发展,人们认识到了拮抗作用的本质,开始有意识地研究。本世纪初,已经分离出多种抗生素,但其效率不高,毒性较大,没有实用价值。1929年,英国人Flemming在培养葡萄球菌时,发现从空气中落到培养基上的一种青霉菌能抑制其周围的葡萄球菌生长。他进一步研究发现青霉菌分泌一种抗菌物质,能抑制葡萄球菌生长,于是把它命名为青霉素。他没有进行动物试验,青霉素也没有用于临床。直到1940年,牛津大学研究小组提出“青霉素是一种化学治疗剂”,才将它应用于临床。同年,瓦克斯曼发现链霉素,抗生素时代开始,陆续发现了许多抗生素,成功地治疗了肺炎、结核等传染病,使人类寿命显著提高。此后三十年间,发现的抗生素有数千种,有上百种被广泛应用,抗生素已经成为一个独立的工业部门。

相关话题/生物化学

  • 领限时大额优惠券,享本站正版考研考试资料!
    大额优惠券
    优惠券领取后72小时内有效,10万种最新考研考试考证类电子打印资料任你选。涵盖全国500余所院校考研专业课、200多种职业资格考试、1100多种经典教材,产品类型包含电子书、题库、全套资料以及视频,无论您是考研复习、考证刷题,还是考前冲刺等,不同类型的产品可满足您学习上的不同需求。 ...
    本站小编 Free壹佰分学习网 2022-09-19
  • 芸芸视频考研生物化学复习笔记
    第一篇生物大分子的结构与 功能 第一章氨基酸和蛋白质 一、组成蛋白质的20 种氨基酸的分类 1、非极性氨基酸 包括:甘氨酸、丙氨酸、缬氨酸、亮氨酸、异亮 氨酸、苯丙氨酸、脯氨酸 2、极性氨基酸 极性中性氨基酸:色氨酸、酪氨酸、丝氨酸、半 胱氨酸、蛋氨酸、天冬酰胺、谷氨酰胺、苏氨酸 酸性氨基酸:天冬氨酸、 ...
    本站小编 免费考研网 2019-03-27
  • 生物化学工程复习资料加强版,考研复习总结资料
    生化工程 Biochemical Engineering 绪 论 第一节 生化工程的诞生与发展 一、概述 1.概念: 生化工程或生物化工全称是生物化学工程(Biochemical Engineering)是为生物技术服务的 化学工程。 它是利用化学工程原理和方法对实验室所取得的生物技术成果加以开发,使 之成为生物反应过程的一门学科,是生物化学与工程学 ...
    本站小编 免费考研网 2019-03-25
  • 强化农学生物化学辅导讲义
    一、生物化学概述 (一)生物化学研究的基本内容生物化学是研究生物的化学组成和生命过程中各种化学变化的科学,是研究生命的化学本质的科学。生物化学的研究内容包括以下三个方面: 1.研究生命的化学组成:生物大分子的结构 2.研究生命的新陈代谢:生物大分子的合成降解及代谢途径的调控 3.研究生命体的自我复制 ...
    本站小编 免费考研网 2019-03-25
  • 南开大学2019年微生物学、生物化学与分子生物学接受调剂生
    一、接收专业与范围:接收调剂专业:微生物学;生物化学与分子生物学;接收调剂生第一志愿报考学院:生命科学学院(理学专业);接收调剂生需满足的分数线:政治>=50英语>=50专业课一>=80专业课二>=80总分>=310。二、调剂报名:申请调剂的考生请于3月19日下午到生命科学学院研究生办公室领取《调剂 ...
    本站小编 FreeKaoyan 2019-03-20
  • 生物化学(第三版)课后习题详细解答
    生物化学(第三版)课后习题详细解答 第三章 氨基酸 提要 -氨基酸是蛋白质的构件分子,当用酸、碱或蛋白酶水解蛋白质时可获得它们。蛋白质中的氨基酸都是L型的。但碱水解得到的氨基酸是D型和L型的消旋混合物。 参与蛋白质组成的基本氨基酸只有20种。此外还有若干种氨基酸在某些蛋白质中存在,但它们都是在蛋白质 ...
    本站小编 免费考研网 2019-03-17
  • 西安交通大学833生物化学基础考研真题_重点节选
    一、西安交通大学833生物化学基础考研真题节选图片 题目一 题目二 二、西安交通大学833生物化学基础考研真题考察重点知识节选 单糖的结构 大多数单糖都是手性化合物。单搪构型是指分子中离M墓碳最远的那个手性碳原子的构型。 1.对映异构体:一个不对称碳原子的取代基在空间里的两种取向是物体与镜像的关系.不 ...
    本站小编 免费考研网 2019-03-16
  • 吉林大学338生物化学考研真题_重点节选
    一、吉林大学338 生物化学考研真题节选图片 题目一 题目二 二、 吉林大学338 生物化学考研真题考察重点知识节选 光面内质网(SER):无核枯体颗粒附着的内质网,呈分枝小管状或泡状。其功能主要是合成磷脂和胆固醉。 此外在不同类型细胞中的光面内质网还担负其它复杂的功能(如在肝细胞中起解毒的作用,在肌细胞 ...
    本站小编 免费考研网 2019-03-16
  • 中国农业大学专业辅导班复习资料(生物化学)
    中国农业大学专业辅导班复习资料(生物化学) 第一章,蛋白质 1.蛋白质的生物学功能是什么? 2.蛋白质的元素组成特点及其应用如何? 3.氨基酸的分类有哪几种方法?按侧链R基团分类的理由是什么? 4.蛋白质的分子组成有什么特点? 5.何为蛋白质氨基酸?何为非蛋白质氨基酸? 6.氨基酸有什么 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学食品专业研究生考试生物化学总复习题
    一,概念题(每题2分,共14分) 糖有氧氧化 脂肪酸-氧化 鸟氨酸循环 酮体 限制性内切酶 中心法则 联合脱氨基 氮的正平衡 糖异生 DNA的变性 共价调节 Tm值 核糖体 引发体 冈崎片断 二,填空题(每空1分,共50分) 1.糖酵解有 步脱氢反应和 步底物磷酸化反应。 2.18C的饱和脂肪酸 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学食品学院研究生考试生物化学名词解释
    生物化学名词解释 第一章 氨基酸和蛋白质 氨基酸(amino acid):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连在-碳上。 必需氨基酸(essential amino acid):指人(或其它脊椎动物)(赖氨酸,苏氨酸等)自己不能合成,需要从食物中获得的氨基酸。 非必需氨基酸(nonessential amino acid):指 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学生物学院生物化学总复习题
    生物化学习题 名词解释 糖原;半纤维素;琼脂糖;糖蛋白;糖肽键;糖苷;氨基酸pI;桑格反应;艾德曼反应;HPLC;阳离子交换剂;分配系数;肽键;多肽链;艾德曼降解;-螺旋;-折叠片;-转角;二面角;Ramachandran 构象图;蛋白质一级结构;二级结构;超二级结构;三级结构;结构域;亚基;四级结 ...
    本站小编 免费考研网 2019-03-13
  • 中国农业大学生物化学考研复习习题含答案
    中国农业大学生物化学习题集 第一章 蛋白质化学 一、单项选择题 1.测得某一蛋白质样品的氮含量为0.40g,此样品约含蛋白质多少? A.2.00g  B.2.50g  C.6.40g  D.3.00g   E.6.25g 2.下列含有两个羧基的氨基酸是: A.精氨酸 B.赖氨酸 C.甘氨酸  D.色氨酸  E.谷氨酸 3.维持蛋白质二级结构 ...
    本站小编 免费考研网 2019-03-13
  • 中科院水生所2012生物化学硕士考试专业课试题
    中国科学院研究生院水生生物研究所 2012年招收攻读硕士学位研究生入学考试试题 生物化学 一、名词解释(共30分,每小题3分) 1. 超分子复合物 (supermolecular complexe): 2. 多巴胺(dopamine): 3. 旋光活性(optical activity): 4. 两性离子(zwitterions): 5. 加压素(vasopressin): 6. 免疫印迹( ...
    本站小编 免费考研网 2019-03-13
  • 中山大学医学院生物化学本科考试试卷
    以下内容为生化期末考试复习材料,根据95-08历年考试大题关键词涉及相关知识点频率排序。★数量仅代表出现次数,与重要性无关。 1. 胆汁酸、肝肠循环相关,胆红素代谢 ★★★★★★★★★ 胆汁酸(bile acids):存在于胆汁中一大类胆烷酸总称,以钠盐或钾盐的形式存在,即胆汁酸盐,简称胆盐。有游离型 ...
    本站小编 免费考研网 2019-03-12
  • 中山大学医学院生物化学复习重点知识点归纳总结
    绪 论 掌握:生物化学、生物大分子和分子生物学的概念。 【复习思考题】 1. 何谓生物化学? 2. 当代生物化学研究的主要内容有哪些? 蛋白质的结构与功能 掌握:蛋白质元素组成及其特点;蛋白质基本组成单位--氨基酸的种类、基本结构及主要特点;蛋白质的分子结构;蛋白质结构与功能的关系;蛋白质的主要理化性质及 ...
    本站小编 免费考研网 2019-03-12