

考试要求1. 理解原函数的概念,理解不定积分和定积分的概念。2. 熟练掌握不定积分的基本公式,熟练掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。熟练掌握不定积分和定积分的换元积分法与分部积分法。3. 会求有理函数三角函数有理式和简单无理函数的积分。4. 理解变上限定积分定义的函数,会求它的导数。5. 理解广义积分(无穷限积分瑕积分)的概念,掌握无穷限积分瑕积分的收敛性判别法,会计算一些简单的广义积分。6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积平面曲线的弧长旋转体的体积及侧面积截面面积为已知的立体体积功引力压力)及函数的平均值。(四)向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积向量积和混合积两向量垂直平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面平面与直线直线与直线的夹角以及平行垂直的条件点到平面和点到直线的距离球面母线平行于坐标轴的柱面旋转轴为坐标轴的旋转曲面的方程常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1. 熟悉空间直角坐标系,理解向量及其模的概念。2. 熟练掌握向量的运算(线性运算数量积向量积),掌握两向量垂直平行的条件。3. 理解向量在轴上的投影,了解投影定理及投影的运算。理解方向数与方向余弦向量的坐标表达式,会用坐标表达式进行向量的运算。4.熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。5. 会求平面与平面平面与直线直线与直线之间的夹角,并会利用平面直线的相互关系(平行垂直相交等)解决有关问题。6. 会求空间两点间的距离点到直线的距离以及点到平面的距离。7. 了解空间曲线方程和曲面方程的概念。8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。9. 了解常用二次曲面的方程图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。(五)多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限和连续有界闭区域上多元连续函数的性质多元函数偏导数和全微分的概念及求法全微分存在的必要条件和充分条件多元复合函数隐函数的求导法高阶偏导数的求法 空间曲线的切线和法平面曲面的切平面和法线方向导数和梯度二元函数的泰勒公式多元函数的极值和条件极值拉格朗日乘数法多元函数的最大值最小值及其简单应用 全微分在近似计算中的应用
考试要求1. 理解多元函数的概念理解二元函数的几何意义。2.理解二元函数的极限与连续性的概念及基本运算性质,了解二元函数累次极限和极限的关系 会判断二元函数在已知点处极限的存在性和连续性 了解有界闭区域上连续函数的性质。3. 理解多元函数偏导数和全微分的概念 了解二元函数可微偏导数存在及连续的关系,会求偏导数和全微分,了解二元函数两个混合偏导数相等的条件 了解全微分存在的必要条件和充分条件,了解全微分形式的不变性。4. 熟练掌握多元复合函数偏导数的求法。5. 熟练掌握隐函数的求导法则。6. 理解方向导数与梯度的概念并掌握其计算方法。7.理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。8. 了解二元函数的二阶泰勒公式。9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值最小值,并会解决一些简单的应用问题。10. 了解全微分在近似计算中的应用(六)多元函数积分学考试内容二重积分三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念性质及计算两类曲线积分之间的关系格林(Green)公式平面曲线积分与路径无关的条件已知全微分求原函数两类曲面积分的概念性质及计算两类曲面积分之间的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度旋度的概念及计算曲线积分和曲面积分的应用考试要求1. 理解二重积分三重积分的概念,掌握重积分的性质。2. 熟练掌握二重积分的计算方法(直角坐标极坐标),会计算三重积分(直角坐标柱面坐标球面坐标),掌握二重积分的换元法。3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。7. 了解散度旋度的概念,并会计算。8. 了解含参变量的积分和莱布尼茨公式。9. 会用重积分曲线积分及曲面积分求一些几何量与物理量(平面图形的面积曲面的面积物体的体积曲线的弧长物体的质量重心转动惯量引力功及流量等)。(七)无穷级数考试内容常数项级数及其收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域和函数的概念幂级数及其收敛半径收敛区间(指开区间)和收敛域幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法泰勒级数 初等函数的幂级数展开式函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[-l,l]上的傅里叶级数函数在[0,l]上的正弦级数和余弦级数。函数项级数的一致收敛性。考试要求1. 理解常数项级数的收敛发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件2. 掌握几何级数与p级数的收敛与发散情况。3. 熟练掌握正项级数收敛性的各种判别法。4. 熟练掌握交错级数的莱布尼茨判别法。5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。6. 了解函数项级数的收敛域及和函数的概念。7. 理解幂级数的收敛域收敛半径的概念,并掌握幂级数的收敛半径及收敛域的求法。8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。9. 了解函数展开为泰勒级数的充分必要条件。10. 掌握一些常见函数如exsinxcos xln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。11. 会利用函数的幂级数展开式进行近似计算。12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数,会将周期为2l的函数展开为傅里叶级数。13. 了解函数项级数的一致收敛性及一致收敛的函数项级数的性质,会判断函数项级数的一致收敛性。(八)常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降价的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程二阶常系数非齐次线性微分方程高于二阶的某些常系数齐次线性微分方程欧拉(Euler)方程微分方程的幂级数解法 简单的常系数线性微分方程组的解法 微分方程的简单应用考试要求1. 掌握微分方程及其阶解通解初始条件和特解等概念。2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。3. 会解齐次微分方程伯努利方程和全微分方程,会用简单的变量代换求解某些微分方程。4. 会用降阶法解下列方程:y(n)=f(x),y″=f(x,y′)和y″=f(y,y′)5. 理解线性微分方程解的性质及解的结构定理。了解解二阶非齐次线性微分方程的常数变易法。6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。7. 会解自由项为多项式指数函数正弦函数余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程。8. 会解欧拉方程。9. 了解微分方程的幂级数解法。10.了解简单的常系数线性微分方程组的解法。11会用微分方程解决一些简单的应用问题。五主要参考文献《高等数学》(上下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。编制单位:中国科学院大学编制日期:2018年7月10日